湖相页岩储层薄片的超分辨率及其在矿物和孔隙分割中的应用

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-09-01 DOI:10.1016/j.acags.2023.100133
Chao Guo, Chao Gao, Chao Liu, Gang Liu, Jianbo Sun, Yiyi Chen, Chendong Gao
{"title":"湖相页岩储层薄片的超分辨率及其在矿物和孔隙分割中的应用","authors":"Chao Guo,&nbsp;Chao Gao,&nbsp;Chao Liu,&nbsp;Gang Liu,&nbsp;Jianbo Sun,&nbsp;Yiyi Chen,&nbsp;Chendong Gao","doi":"10.1016/j.acags.2023.100133","DOIUrl":null,"url":null,"abstract":"<div><p>Lacustrine shale reservoirs present intricate attributes such as the prevalence of lamination, rapid sedimentary phase transitions, and pronounced heterogeneity. These factors introduce substantial challenges in analyzing and comprehending reservoir characteristics. Thin-section imaging offers a direct medium to observe these traits, yet the intrinsic compromise between image resolution and field of view impedes the concurrent capture of comprehensive details and contextual overview. This study delves into the application of super-resolution (SR) techniques to augment the segmentation of thin-section images from lacustrine shale, an unconventional reservoir. SR application furnishes high-resolution images, facilitating a robust analysis of morphology, texture, edge properties, and target classification. Utilizing data from the lacustrine shale reservoir of the Ordos Basin, we evaluate our methodology and assess the impact of SR enhancement on segmentation. Quantitative results indicate significant improvements, with the Jaccard index for shale increasing from 0.4790 (Low-Resolution) to 0.7803 (ESRGAN) in the Y channel of the YCrCb color space after level set segmentation, exemplifying the efficacy of SR in shale gas and oil reservoirs. This research underscores the necessity to consider lacustrine shale's unique features while formulating and implementing SR techniques for improved information extraction. Furthermore, it highlights SR's potential for propelling future research and industry-specific applications.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"19 ","pages":"Article 100133"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution in thin section of lacustrine shale reservoirs and its application in mineral and pore segmentation\",\"authors\":\"Chao Guo,&nbsp;Chao Gao,&nbsp;Chao Liu,&nbsp;Gang Liu,&nbsp;Jianbo Sun,&nbsp;Yiyi Chen,&nbsp;Chendong Gao\",\"doi\":\"10.1016/j.acags.2023.100133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lacustrine shale reservoirs present intricate attributes such as the prevalence of lamination, rapid sedimentary phase transitions, and pronounced heterogeneity. These factors introduce substantial challenges in analyzing and comprehending reservoir characteristics. Thin-section imaging offers a direct medium to observe these traits, yet the intrinsic compromise between image resolution and field of view impedes the concurrent capture of comprehensive details and contextual overview. This study delves into the application of super-resolution (SR) techniques to augment the segmentation of thin-section images from lacustrine shale, an unconventional reservoir. SR application furnishes high-resolution images, facilitating a robust analysis of morphology, texture, edge properties, and target classification. Utilizing data from the lacustrine shale reservoir of the Ordos Basin, we evaluate our methodology and assess the impact of SR enhancement on segmentation. Quantitative results indicate significant improvements, with the Jaccard index for shale increasing from 0.4790 (Low-Resolution) to 0.7803 (ESRGAN) in the Y channel of the YCrCb color space after level set segmentation, exemplifying the efficacy of SR in shale gas and oil reservoirs. This research underscores the necessity to consider lacustrine shale's unique features while formulating and implementing SR techniques for improved information extraction. Furthermore, it highlights SR's potential for propelling future research and industry-specific applications.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"19 \",\"pages\":\"Article 100133\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197423000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

湖相页岩储层具有层压作用盛行、沉积相变迅速、非均质性明显等复杂特征。这些因素给分析和理解储层特征带来了巨大的挑战。薄层成像为观察这些特征提供了一种直接的媒介,但图像分辨率和视场之间的内在妥协阻碍了全面细节和上下文概述的同时捕获。本研究深入研究了超分辨率(SR)技术的应用,以增强湖相页岩(一种非常规储层)薄切片图像的分割。SR应用程序提供高分辨率图像,促进形态学,纹理,边缘属性和目标分类的稳健分析。利用鄂尔多斯盆地湖相页岩储层的数据,我们评估了我们的方法,并评估了SR增强对分割的影响。定量结果表明,经过水平集分割后,YCrCb颜色空间Y通道的页岩Jaccard指数从0.4790 (Low-Resolution)提高到0.7803 (ESRGAN),表明SR在页岩油气储层中的有效性。这项研究强调了在制定和实施SR技术以改进信息提取时考虑湖相页岩独特特征的必要性。此外,它还强调了SR在推动未来研究和特定行业应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution in thin section of lacustrine shale reservoirs and its application in mineral and pore segmentation

Lacustrine shale reservoirs present intricate attributes such as the prevalence of lamination, rapid sedimentary phase transitions, and pronounced heterogeneity. These factors introduce substantial challenges in analyzing and comprehending reservoir characteristics. Thin-section imaging offers a direct medium to observe these traits, yet the intrinsic compromise between image resolution and field of view impedes the concurrent capture of comprehensive details and contextual overview. This study delves into the application of super-resolution (SR) techniques to augment the segmentation of thin-section images from lacustrine shale, an unconventional reservoir. SR application furnishes high-resolution images, facilitating a robust analysis of morphology, texture, edge properties, and target classification. Utilizing data from the lacustrine shale reservoir of the Ordos Basin, we evaluate our methodology and assess the impact of SR enhancement on segmentation. Quantitative results indicate significant improvements, with the Jaccard index for shale increasing from 0.4790 (Low-Resolution) to 0.7803 (ESRGAN) in the Y channel of the YCrCb color space after level set segmentation, exemplifying the efficacy of SR in shale gas and oil reservoirs. This research underscores the necessity to consider lacustrine shale's unique features while formulating and implementing SR techniques for improved information extraction. Furthermore, it highlights SR's potential for propelling future research and industry-specific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1