基于水文气候变量的参考蒸散预测:不同机器学习模型的比较

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES Hydrological Sciences Journal-Journal Des Sciences Hydrologiques Pub Date : 2023-04-20 DOI:10.1080/02626667.2023.2203824
Dilek Sabancı, K. Yurekli, Mehmet Murat Comert, Serhat Kılıçarslan, Müberra Erdoğan
{"title":"基于水文气候变量的参考蒸散预测:不同机器学习模型的比较","authors":"Dilek Sabancı, K. Yurekli, Mehmet Murat Comert, Serhat Kılıçarslan, Müberra Erdoğan","doi":"10.1080/02626667.2023.2203824","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper aimed to estimate the reference evapotranspiration (ET0) due to some limitations of the Food and Agriculture Organization-56 Penman-Monteith (FAO 56-PM) approach by using five alternative machine learning models. The study makes an important contribution to the ET0 estimation success for of the ET0 of 12 stations with variable climate characteristics in the Central Anatolian Region (CAR). The performances of the models were compared with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) metrics that are frequently cited in the literature, and also with the performance index (PI). Long short-term memory (LSTM), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS) models provided the best performance in eight, three, and one stations, respectively. The R2, MAE, RMSE, and PI values of the selected models from each station vary in the range of 0.987-0.999, 1.948-4.567, 2.671-6.659, and 1.544-4.018, respectively.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting reference evapotranspiration based on hydro-climatic variables: comparison of different machine learning models\",\"authors\":\"Dilek Sabancı, K. Yurekli, Mehmet Murat Comert, Serhat Kılıçarslan, Müberra Erdoğan\",\"doi\":\"10.1080/02626667.2023.2203824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper aimed to estimate the reference evapotranspiration (ET0) due to some limitations of the Food and Agriculture Organization-56 Penman-Monteith (FAO 56-PM) approach by using five alternative machine learning models. The study makes an important contribution to the ET0 estimation success for of the ET0 of 12 stations with variable climate characteristics in the Central Anatolian Region (CAR). The performances of the models were compared with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) metrics that are frequently cited in the literature, and also with the performance index (PI). Long short-term memory (LSTM), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS) models provided the best performance in eight, three, and one stations, respectively. The R2, MAE, RMSE, and PI values of the selected models from each station vary in the range of 0.987-0.999, 1.948-4.567, 2.671-6.659, and 1.544-4.018, respectively.\",\"PeriodicalId\":55042,\"journal\":{\"name\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2023.2203824\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2203824","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

由于粮农组织56 Penman-Monteith (FAO 56-PM)方法的一些局限性,本文旨在通过使用五种替代机器学习模型来估计参考蒸散发(ET0)。该研究对中安纳托利亚地区(CAR) 12个变气候特征台站的ET0估算成功做出了重要贡献。将模型的性能与文献中经常引用的决定系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)指标以及性能指数(PI)进行比较。长短期记忆(LSTM)、人工神经网络(ANN)和多元自适应回归样条(MARS)模型分别在8个、3个和1个站点上表现最佳。各站模型的R2、MAE、RMSE和PI值分别在0.987 ~ 0.999、1.948 ~ 4.567、2.671 ~ 6.659和1.544 ~ 4.018之间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting reference evapotranspiration based on hydro-climatic variables: comparison of different machine learning models
ABSTRACT This paper aimed to estimate the reference evapotranspiration (ET0) due to some limitations of the Food and Agriculture Organization-56 Penman-Monteith (FAO 56-PM) approach by using five alternative machine learning models. The study makes an important contribution to the ET0 estimation success for of the ET0 of 12 stations with variable climate characteristics in the Central Anatolian Region (CAR). The performances of the models were compared with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) metrics that are frequently cited in the literature, and also with the performance index (PI). Long short-term memory (LSTM), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS) models provided the best performance in eight, three, and one stations, respectively. The R2, MAE, RMSE, and PI values of the selected models from each station vary in the range of 0.987-0.999, 1.948-4.567, 2.671-6.659, and 1.544-4.018, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
期刊最新文献
Potential assessment of calibration approaches using the SWAT hydrological model for streamflow and sediment yield for a large-scale catchment Explaining the groundwater salinity of hard-rock aquifers in semi-arid hinterlands using a multidisciplinary approach An assessment of small island hydrological research activity conducted in the Oceania region Spatiotemporal river–aquifer interactions of a large tropical dryland river with high anthropic intervention A priori selection of hydrological model structures in modular modelling frameworks: application to Great Britain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1