蒙特卡罗法测定学生出勤率的模拟技术

Klara Bonita Madao, I. Gusti, Ayu Ngurah, Kade Sukiastini, Engelina Prisca Kalensun, Kata kunci — Kehadiran, Monte Simulasi, Prediksi carlo
{"title":"蒙特卡罗法测定学生出勤率的模拟技术","authors":"Klara Bonita Madao, I. Gusti, Ayu Ngurah, Kade Sukiastini, Engelina Prisca Kalensun, Kata kunci — Kehadiran, Monte Simulasi, Prediksi carlo","doi":"10.22146/ijccs.83891","DOIUrl":null,"url":null,"abstract":"In lectures, attendance is one of the assessment points that plays an important role in determining a student's graduation. The attendance prediction simulation is an estimate of the calculation of student attendance in lectures. This type of research is quantitative research using data collection techniques by means of observation and documentation study. In the process of analysis, the observed data were attendance data of 5th semester computer engineering study program students and a sample of 40 people as research subjects. The stages of the monte carlo simulation are used: Determining variable frequency; Calculating cumulative probabilities; Determine random number intervals; Create a simulation to determine student attendance; Generate random numbers; Make a simulation of the experimental circuit. Based on a series of experimental data that has been The simulation results obtained predicted attendance and absence of computer engineering study program students at the STMIK Agamua Wamena campus from November 7 to December 19, 2022 with an average attendance of above 50%. Keywords— Attendance, Simulation, Monte carlo, Prediction","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIMULATION TECHNIQUE IN DETERMINING STUDENT ATTENDANCE USING THE MONTE CARLO METHOD\",\"authors\":\"Klara Bonita Madao, I. Gusti, Ayu Ngurah, Kade Sukiastini, Engelina Prisca Kalensun, Kata kunci — Kehadiran, Monte Simulasi, Prediksi carlo\",\"doi\":\"10.22146/ijccs.83891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In lectures, attendance is one of the assessment points that plays an important role in determining a student's graduation. The attendance prediction simulation is an estimate of the calculation of student attendance in lectures. This type of research is quantitative research using data collection techniques by means of observation and documentation study. In the process of analysis, the observed data were attendance data of 5th semester computer engineering study program students and a sample of 40 people as research subjects. The stages of the monte carlo simulation are used: Determining variable frequency; Calculating cumulative probabilities; Determine random number intervals; Create a simulation to determine student attendance; Generate random numbers; Make a simulation of the experimental circuit. Based on a series of experimental data that has been The simulation results obtained predicted attendance and absence of computer engineering study program students at the STMIK Agamua Wamena campus from November 7 to December 19, 2022 with an average attendance of above 50%. Keywords— Attendance, Simulation, Monte carlo, Prediction\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijccs.83891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.83891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在课堂上,出勤率是决定学生毕业与否的重要考核指标之一。出勤率预测模拟是对学生上课出勤率计算的估计。这种类型的研究是定量研究,使用数据收集技术,通过观察和文献研究。在分析过程中,观察到的数据是计算机工程专业第五学期学生的出勤数据和40人作为研究对象的样本。采用蒙特卡罗模拟的几个阶段:确定变频;计算累积概率;确定随机数区间;创建一个模拟来确定学生的出勤率;生成随机数;对实验电路进行仿真。根据一系列实验数据,模拟结果获得了2022年11月7日至12月19日STMIK Agamua Wamena校区计算机工程专业学生的预测出勤率和缺勤率,平均出勤率在50%以上。关键词:考勤,模拟,蒙特卡罗,预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIMULATION TECHNIQUE IN DETERMINING STUDENT ATTENDANCE USING THE MONTE CARLO METHOD
In lectures, attendance is one of the assessment points that plays an important role in determining a student's graduation. The attendance prediction simulation is an estimate of the calculation of student attendance in lectures. This type of research is quantitative research using data collection techniques by means of observation and documentation study. In the process of analysis, the observed data were attendance data of 5th semester computer engineering study program students and a sample of 40 people as research subjects. The stages of the monte carlo simulation are used: Determining variable frequency; Calculating cumulative probabilities; Determine random number intervals; Create a simulation to determine student attendance; Generate random numbers; Make a simulation of the experimental circuit. Based on a series of experimental data that has been The simulation results obtained predicted attendance and absence of computer engineering study program students at the STMIK Agamua Wamena campus from November 7 to December 19, 2022 with an average attendance of above 50%. Keywords— Attendance, Simulation, Monte carlo, Prediction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1