{"title":"任意有限域上的差积","authors":"B. Murphy, G. Petridis","doi":"10.19086/DA.5098","DOIUrl":null,"url":null,"abstract":"There exists an absolute constant $\\delta > 0$ such that for all $q$ and all subsets $A \\subseteq \\mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \\delta}$, then \\[ |(A-A)(A-A)| = |\\{ (a -b) (c-d) : a,b,c,d \\in A\\}| > \\frac{q}{2}. \\] Any $\\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. \nOur proof is based on a qualitatively optimal characterisation of sets $A,X \\subseteq \\mathbb{F}_q$ for which the number of solutions to the equation \\[ (a_1-a_2) = x (a_3-a_4) \\, , \\; a_1,a_2, a_3, a_4 \\in A, x \\in X \\] is nearly maximum. \nA key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. \nWe also prove a stronger statement for \\[ (A-B)(C-D) = \\{ (a -b) (c-d) : a \\in A, b \\in B, c \\in C, d \\in D\\} \\] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Products of Differences over Arbitrary Finite Fields\",\"authors\":\"B. Murphy, G. Petridis\",\"doi\":\"10.19086/DA.5098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists an absolute constant $\\\\delta > 0$ such that for all $q$ and all subsets $A \\\\subseteq \\\\mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \\\\delta}$, then \\\\[ |(A-A)(A-A)| = |\\\\{ (a -b) (c-d) : a,b,c,d \\\\in A\\\\}| > \\\\frac{q}{2}. \\\\] Any $\\\\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. \\nOur proof is based on a qualitatively optimal characterisation of sets $A,X \\\\subseteq \\\\mathbb{F}_q$ for which the number of solutions to the equation \\\\[ (a_1-a_2) = x (a_3-a_4) \\\\, , \\\\; a_1,a_2, a_3, a_4 \\\\in A, x \\\\in X \\\\] is nearly maximum. \\nA key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. \\nWe also prove a stronger statement for \\\\[ (A-B)(C-D) = \\\\{ (a -b) (c-d) : a \\\\in A, b \\\\in B, c \\\\in C, d \\\\in D\\\\} \\\\] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.5098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.5098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14
摘要
存在一个绝对常数$\delta > 0$,使得对于所有$q$和所有具有$q$元素的有限域的子集$A \subseteq \mathbb{F}_q$,如果$|A| > q^{2/3 - \delta}$,那么\[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $\delta q^{2/3}$,由于Bennett, Hart, Iosevich, Pakianathan和Rudnev,这是此类问题的典型。我们的证明是基于集合$A,X \subseteq \mathbb{F}_q$的定性最优特征,其中方程\[ (a_1-a_2) = x (a_3-a_4) \, , \; a_1,a_2, a_3, a_4 \in A, x \in X \]的解的数量几乎是最大的。一个关键因素是确定集合$A, X$的精确代数结构,其中$|A + XA|$几乎是最小的,这改进了Bourgain和Glibichuk使用Gill, Helfgott和Tao的工作的结果。当$A,B,C,D$是素域上的集合时,我们也证明了一个更强的命题\[ (A-B)(C-D) = \{ (a -b) (c-d) : a \in A, b \in B, c \in C, d \in D\} \],推广了Roche-Newton, Rudnev, Shkredov和作者的结果。
Products of Differences over Arbitrary Finite Fields
There exists an absolute constant $\delta > 0$ such that for all $q$ and all subsets $A \subseteq \mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - \delta}$, then \[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $\delta q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions.
Our proof is based on a qualitatively optimal characterisation of sets $A,X \subseteq \mathbb{F}_q$ for which the number of solutions to the equation \[ (a_1-a_2) = x (a_3-a_4) \, , \; a_1,a_2, a_3, a_4 \in A, x \in X \] is nearly maximum.
A key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao.
We also prove a stronger statement for \[ (A-B)(C-D) = \{ (a -b) (c-d) : a \in A, b \in B, c \in C, d \in D\} \] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.
期刊介绍:
Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.