具有弯曲和温克尔型接触效应的弹性板问题的物理信息神经网络

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of the Serbian Society for Computational Mechanics Pub Date : 2021-12-30 DOI:10.24874/jsscm.2021.15.02.05
A. Muradova, G. Stavroulakis
{"title":"具有弯曲和温克尔型接触效应的弹性板问题的物理信息神经网络","authors":"A. Muradova, G. Stavroulakis","doi":"10.24874/jsscm.2021.15.02.05","DOIUrl":null,"url":null,"abstract":"Kirchhoff plate bending and Winkler-type contact problems with different boundary conditions are solved with the use of physics-informed neural networks (PINN). The PINN is built on the base of mechanics laws and deep learning. The idea of the technique includes fitting the governing partial differential equations at collocation points and then training the neural network with the use of optimization techniques. Training of the neural network is performed by numerical optimization using Adam’s method and the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–Shanno) algorithm. The error loss function and the computational error of the approximate solution (output of the neural network) of the bending problem and contact problem with Winkler type elastic foundation are shown on examples. The predictions of the NN are investigated for different values of the foundation’s constants. The effectiveness of the proposed framework is demonstrated through numerical experiments with different numbers of epochs, hidden layers, neurons and numbers of collocation points. The Tensorflow deep learning and scientific computing package of Python is used through a Jupyter Notebook.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PHYSICS-INFORMED NEURAL NETWORKS FOR ELASTIC PLATE PROBLEMS WITH BENDING AND WINKLER-TYPE CONTACT EFFECTS\",\"authors\":\"A. Muradova, G. Stavroulakis\",\"doi\":\"10.24874/jsscm.2021.15.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kirchhoff plate bending and Winkler-type contact problems with different boundary conditions are solved with the use of physics-informed neural networks (PINN). The PINN is built on the base of mechanics laws and deep learning. The idea of the technique includes fitting the governing partial differential equations at collocation points and then training the neural network with the use of optimization techniques. Training of the neural network is performed by numerical optimization using Adam’s method and the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–Shanno) algorithm. The error loss function and the computational error of the approximate solution (output of the neural network) of the bending problem and contact problem with Winkler type elastic foundation are shown on examples. The predictions of the NN are investigated for different values of the foundation’s constants. The effectiveness of the proposed framework is demonstrated through numerical experiments with different numbers of epochs, hidden layers, neurons and numbers of collocation points. The Tensorflow deep learning and scientific computing package of Python is used through a Jupyter Notebook.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/jsscm.2021.15.02.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/jsscm.2021.15.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

利用物理信息神经网络(PINN)求解了不同边界条件下的Kirchhoff板弯曲和Winkler型接触问题。PINN建立在力学定律和深度学习的基础上。该技术的思想包括在配置点拟合控制偏微分方程,然后使用优化技术训练神经网络。神经网络的训练是通过使用Adam方法和L-BFGS(Limited-Broyden–Fletcher–Goldfarb–Shanno)算法的数值优化来执行的。文中给出了Winkler型弹性地基的弯曲问题和接触问题的误差损失函数和近似解(神经网络输出)的计算误差。对不同基础常数值的神经网络预测进行了研究。通过不同时期数、隐藏层数、神经元数和搭配点数的数值实验,验证了该框架的有效性。Python的Tensorflow深度学习和科学计算包通过Jupyter笔记本使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHYSICS-INFORMED NEURAL NETWORKS FOR ELASTIC PLATE PROBLEMS WITH BENDING AND WINKLER-TYPE CONTACT EFFECTS
Kirchhoff plate bending and Winkler-type contact problems with different boundary conditions are solved with the use of physics-informed neural networks (PINN). The PINN is built on the base of mechanics laws and deep learning. The idea of the technique includes fitting the governing partial differential equations at collocation points and then training the neural network with the use of optimization techniques. Training of the neural network is performed by numerical optimization using Adam’s method and the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–Shanno) algorithm. The error loss function and the computational error of the approximate solution (output of the neural network) of the bending problem and contact problem with Winkler type elastic foundation are shown on examples. The predictions of the NN are investigated for different values of the foundation’s constants. The effectiveness of the proposed framework is demonstrated through numerical experiments with different numbers of epochs, hidden layers, neurons and numbers of collocation points. The Tensorflow deep learning and scientific computing package of Python is used through a Jupyter Notebook.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
RENORMALIZATION GROUP METHOD FOR A CLASS OF LAGRANGE MECHANICAL SYSTEMS NUMERICAL INVESTIGATION OF THE NANOFLUID NATURAL CONVECTION FLOW IN A CPU HEAT SINK USING BUONGIORNO TOW-PHASE MODEL UNSTEADY NUMERICAL INVESTIGATION OF FERROFLUID FORCED CONVECTION OVER A DOWNWARD STEP CONTAINING A ROTATING FINNED CYLINDER NUMERICAL INVESTIGATION OF SUPERSONIC FLOW SEPARATION IN THRUST-OPTIMIZED CONTOUR ROCKET NOZZLE COST-EFFECTIVENESS ANALYSIS OF IN SILICO CLINICAL TRIALS OF VASCULAR STENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1