基于人工智能技术的电缆挤压速度控制

R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings
{"title":"基于人工智能技术的电缆挤压速度控制","authors":"R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings","doi":"10.25077/jnte.v12n1.1045.2023","DOIUrl":null,"url":null,"abstract":"Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Control of an Electrical Cable Extrusion Process Using Artificial Intelligence-Based Technique\",\"authors\":\"R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings\",\"doi\":\"10.25077/jnte.v12n1.1045.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n1.1045.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n1.1045.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数电缆制造公司使用可编程逻辑控制器与常规控制器来控制电缆挤压期间的线路速度。这些传统的控制器难以保持线速度恒定,造成挤压电缆表面缺陷,影响制造电缆的质量。为了克服这些挑战,从加纳的一家电缆制造公司收集了电缆制造过程中缺陷原因的数据,以确定电缆制造过程中的可能原因。设计了自适应神经模糊推理系统(ANFIS)控制器,在电缆挤压过程中提供恒定的线速度。为了验证该控制器的鲁棒性,将其与传统的比例积分导数控制器和模糊逻辑控制器进行了比较。采用MATLAB/Simulink软件对控制器进行了设计和仿真。对收集数据的分析表明,由于电缆制造过程中使用的机器线速度控制不当,绝缘/护套断裂是电缆制造过程中经常发生的缺陷。基于从各种控制器获得的结果,得出结论,ANFIS控制器在实现对线速度变化的稳定性方面具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speed Control of an Electrical Cable Extrusion Process Using Artificial Intelligence-Based Technique
Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1