R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings
{"title":"基于人工智能技术的电缆挤压速度控制","authors":"R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings","doi":"10.25077/jnte.v12n1.1045.2023","DOIUrl":null,"url":null,"abstract":"Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Control of an Electrical Cable Extrusion Process Using Artificial Intelligence-Based Technique\",\"authors\":\"R. A. Ofosu, E. Normanyo, N-Yo Abdul-Aziz, Stephen Smart Stickings\",\"doi\":\"10.25077/jnte.v12n1.1045.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n1.1045.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n1.1045.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed Control of an Electrical Cable Extrusion Process Using Artificial Intelligence-Based Technique
Most cable manufacturing companies use Programmable Logic Controllers with conventional controllers to control line speed during cable extrusion. These traditional controllers have difficulties keeping the line speed constant, causing surface defects on the extruded cables and affecting the quality of the manufactured cables. To overcome these challenges, data on the causes of defects during cable manufacturing were collected from a cable manufacturing company in Ghana to ascertain the possible causes during cable manufacturing. Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was designed to provide a constant line speed during the cable extrusion process. To ascertain its robustness, the ANFIS controller was compared to a conventional Proportional Integral Derivative controller and a Fuzzy Logic controller. The controllers were designed and simulated using MATLAB/Simulink software. The analysis of the collected data indicated that a break in insulation/ sheath was a frequently occurring defect during the cable manufacturing process due to improper line speed control of the machines used in the cable manufacturing process. Based on the results obtained from the various controllers, it was concluded that the ANFIS controller was robust in achieving stability regarding line speed variations.