传统与智能文本抄袭检测方法的分析研究

A. Ali, A. Taqa
{"title":"传统与智能文本抄袭检测方法的分析研究","authors":"A. Ali, A. Taqa","doi":"10.33899/edusj.2021.131895.1192","DOIUrl":null,"url":null,"abstract":"The Web provides various kinds of data and applications that are readily available to explore and are considered a powerful tool for humans. Copyright violation in web documents occurs when there is an unauthorized copy of the information or text from the original document on the web; this violation is known as Plagiarism. Plagiarism Detection (PD)can be defined as the procedure that finds similarities between a document and other documents based on lexical, semantic, and syntactic textual features. The approaches for numeric representation (vectorization) of text like Vector Space Model (VSM) and word embedding along with text similarity measures such as cosine and jaccard are very necessary for plagiarism detection. This paper deals with the concepts of plagiarism, kinds of plagiarism, textual features, text similarity measures, and plagiarism detection methods, which are based on intelligent or traditional techniques. Furthermore, different types of traditional and algorithms of deep learning for instance, Convolutional Neural Network (CNN) and Long ShortTerm Memory (LSTM) are discussed as a plagiarism detector. Besides that, this work reviews many other papers that give attention to the topic of Plagiarism and its detection.","PeriodicalId":33491,"journal":{"name":"mjl@ ltrby@ wl`lm","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analytical Study of Traditional and Intelligent Textual Plagiarism Detection Approaches\",\"authors\":\"A. Ali, A. Taqa\",\"doi\":\"10.33899/edusj.2021.131895.1192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Web provides various kinds of data and applications that are readily available to explore and are considered a powerful tool for humans. Copyright violation in web documents occurs when there is an unauthorized copy of the information or text from the original document on the web; this violation is known as Plagiarism. Plagiarism Detection (PD)can be defined as the procedure that finds similarities between a document and other documents based on lexical, semantic, and syntactic textual features. The approaches for numeric representation (vectorization) of text like Vector Space Model (VSM) and word embedding along with text similarity measures such as cosine and jaccard are very necessary for plagiarism detection. This paper deals with the concepts of plagiarism, kinds of plagiarism, textual features, text similarity measures, and plagiarism detection methods, which are based on intelligent or traditional techniques. Furthermore, different types of traditional and algorithms of deep learning for instance, Convolutional Neural Network (CNN) and Long ShortTerm Memory (LSTM) are discussed as a plagiarism detector. Besides that, this work reviews many other papers that give attention to the topic of Plagiarism and its detection.\",\"PeriodicalId\":33491,\"journal\":{\"name\":\"mjl@ ltrby@ wl`lm\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mjl@ ltrby@ wl`lm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33899/edusj.2021.131895.1192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjl@ ltrby@ wl`lm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/edusj.2021.131895.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Web提供了各种可供探索的数据和应用程序,被认为是人类的强大工具。当网络上存在未经授权的原始文件的信息或文本副本时,就会发生网络文件侵犯版权的情况;这种违规行为被称为抄袭。抄袭检测(PD)可以定义为基于文本的词汇、语义和句法特征来发现文档与其他文档之间的相似之处的过程。文本的数字表示(矢量化)方法,如向量空间模型(VSM)和词嵌入,以及文本相似度度量,如余弦和jaccard,对于抄袭检测是非常必要的。本文讨论了剽窃的概念、类型、文本特征、文本相似度度量以及基于智能技术和传统技术的剽窃检测方法。此外,还讨论了不同类型的深度学习传统和算法,如卷积神经网络(CNN)和长短期记忆(LSTM)作为抄袭检测器。除此之外,本工作还回顾了许多其他关注抄袭及其检测主题的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Study of Traditional and Intelligent Textual Plagiarism Detection Approaches
The Web provides various kinds of data and applications that are readily available to explore and are considered a powerful tool for humans. Copyright violation in web documents occurs when there is an unauthorized copy of the information or text from the original document on the web; this violation is known as Plagiarism. Plagiarism Detection (PD)can be defined as the procedure that finds similarities between a document and other documents based on lexical, semantic, and syntactic textual features. The approaches for numeric representation (vectorization) of text like Vector Space Model (VSM) and word embedding along with text similarity measures such as cosine and jaccard are very necessary for plagiarism detection. This paper deals with the concepts of plagiarism, kinds of plagiarism, textual features, text similarity measures, and plagiarism detection methods, which are based on intelligent or traditional techniques. Furthermore, different types of traditional and algorithms of deep learning for instance, Convolutional Neural Network (CNN) and Long ShortTerm Memory (LSTM) are discussed as a plagiarism detector. Besides that, this work reviews many other papers that give attention to the topic of Plagiarism and its detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
38
审稿时长
24 weeks
期刊最新文献
Numerical Solution of the Fredholm Integro-Differential Equations Using High-Order Compact Finite Difference Method Implementing Runge-Kutta Method of Sixth-Order for Numerical Solution of Fuzzy Differential Equations Determining the fundamental conditions of the soliton solution for the new nonlocal discrete Separation and identification of a number of alkaloids and some phenols from two species of plants of the genus Euphorbia grown in Nineveh Governorate. Diagnosing Soft Tissue Tumors using Machine Learning Techniques: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1