{"title":"玉米干旱响应钙调素和钙调素样基因的鉴定和表达分析","authors":"Zhen Wang, Lihong Wang, Jiaxin Li, Wei Yang, Jiabin Ci, Xuejiao Ren, Wei Wang, Yingbai Wang, Liangyu Jiang, Weiguang Yang","doi":"10.1080/17429145.2022.2047235","DOIUrl":null,"url":null,"abstract":"ABSTRACT Calmodulin (CaM) and Calmodulin-like (CML) genes are the primary families of Calcium (Ca2+) sensors which are found to be involved in response to various stresses. Some genes involved in Ca2+ signal transduction have been genome-wide characterized in various species. However, the detailed identification, characterization, and expression profilings of ZmCaM and ZmCML genes in maize remain poorly understood, especially in the response to drought stress. In this study, a total of 7 ZmCaMs and 46 ZmCMLs are identified in maize and unevenly located on 10 chromosomes. ZmCaM and ZmCML proteins are divided into 9 groups. Protein structures analysis shows that the EF-hand motif number of ZmCaMs/ZmCMLs ranges from 3 to 4 and 2 to 4, respectively. A large number of cis-regulatory elements are found in the promoter regions of ZmCaM and ZmCML genes. ZmCaM and ZmCML genes display highly diversified tissue-specific expression patterns. Furthermore, ZmCaM2, ZmCML3, ZmCML6, ZmCML8, ZmCML19, ZmCML24, ZmCML27, ZmCML28, ZmCML36, ZmCML39, and ZmCML40 are induced significantly under drought stress through RNA-seq data and RT-qPCR. Taken together, these results will help to understand the critical roles of ZmCaM and ZmCML genes played in drought resistance and provide valuable candidate genes that could be used to develop drought-resistant maize.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"450 - 461"},"PeriodicalIF":2.6000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification and expression analysis revealed drought stress-responsive Calmodulin and Calmodulin-like genes in maize\",\"authors\":\"Zhen Wang, Lihong Wang, Jiaxin Li, Wei Yang, Jiabin Ci, Xuejiao Ren, Wei Wang, Yingbai Wang, Liangyu Jiang, Weiguang Yang\",\"doi\":\"10.1080/17429145.2022.2047235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Calmodulin (CaM) and Calmodulin-like (CML) genes are the primary families of Calcium (Ca2+) sensors which are found to be involved in response to various stresses. Some genes involved in Ca2+ signal transduction have been genome-wide characterized in various species. However, the detailed identification, characterization, and expression profilings of ZmCaM and ZmCML genes in maize remain poorly understood, especially in the response to drought stress. In this study, a total of 7 ZmCaMs and 46 ZmCMLs are identified in maize and unevenly located on 10 chromosomes. ZmCaM and ZmCML proteins are divided into 9 groups. Protein structures analysis shows that the EF-hand motif number of ZmCaMs/ZmCMLs ranges from 3 to 4 and 2 to 4, respectively. A large number of cis-regulatory elements are found in the promoter regions of ZmCaM and ZmCML genes. ZmCaM and ZmCML genes display highly diversified tissue-specific expression patterns. Furthermore, ZmCaM2, ZmCML3, ZmCML6, ZmCML8, ZmCML19, ZmCML24, ZmCML27, ZmCML28, ZmCML36, ZmCML39, and ZmCML40 are induced significantly under drought stress through RNA-seq data and RT-qPCR. Taken together, these results will help to understand the critical roles of ZmCaM and ZmCML genes played in drought resistance and provide valuable candidate genes that could be used to develop drought-resistant maize.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\"17 1\",\"pages\":\"450 - 461\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2022.2047235\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2047235","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3
摘要
钙调素(CaM)和钙调素样(CML)基因是钙(Ca2+)传感器的主要家族,它们与各种应激反应有关。一些参与Ca2+信号转导的基因已经在不同物种中进行了全基因组表征。然而,玉米中ZmCaM和ZmCML基因的详细鉴定、表征和表达谱仍知之甚少,尤其是在对干旱胁迫的反应中。在本研究中,在玉米中共鉴定出7个ZmCaMs和46个ZmCML,它们在10条染色体上的位置不均匀。ZmCaM和ZmCML蛋白分为9组。蛋白质结构分析表明,ZmCaMs/ZmCML的EF手基序数分别为3-4和2-4。在ZmCaM和ZmCML基因的启动子区发现了大量的顺式调控元件。ZmCaM和ZmCML基因表现出高度多样化的组织特异性表达模式。此外,通过RNA-seq数据和RT-qPCR,在干旱胁迫下显著诱导ZmCaM2、ZmCML3、ZmCML6、ZmCM L8、ZmC L19、ZmL L24、ZmM L27、ZmS L28、Zm C L36、ZmCSL39和ZmCML40。总之,这些结果将有助于理解ZmCaM和ZmCML基因在抗旱性中的关键作用,并为开发抗旱玉米提供有价值的候选基因。
Identification and expression analysis revealed drought stress-responsive Calmodulin and Calmodulin-like genes in maize
ABSTRACT Calmodulin (CaM) and Calmodulin-like (CML) genes are the primary families of Calcium (Ca2+) sensors which are found to be involved in response to various stresses. Some genes involved in Ca2+ signal transduction have been genome-wide characterized in various species. However, the detailed identification, characterization, and expression profilings of ZmCaM and ZmCML genes in maize remain poorly understood, especially in the response to drought stress. In this study, a total of 7 ZmCaMs and 46 ZmCMLs are identified in maize and unevenly located on 10 chromosomes. ZmCaM and ZmCML proteins are divided into 9 groups. Protein structures analysis shows that the EF-hand motif number of ZmCaMs/ZmCMLs ranges from 3 to 4 and 2 to 4, respectively. A large number of cis-regulatory elements are found in the promoter regions of ZmCaM and ZmCML genes. ZmCaM and ZmCML genes display highly diversified tissue-specific expression patterns. Furthermore, ZmCaM2, ZmCML3, ZmCML6, ZmCML8, ZmCML19, ZmCML24, ZmCML27, ZmCML28, ZmCML36, ZmCML39, and ZmCML40 are induced significantly under drought stress through RNA-seq data and RT-qPCR. Taken together, these results will help to understand the critical roles of ZmCaM and ZmCML genes played in drought resistance and provide valuable candidate genes that could be used to develop drought-resistant maize.
期刊介绍:
Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.