基于信息检索可查找性的相关文档聚类

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Retrieval Research Pub Date : 2023-01-06 DOI:10.4018/ijirr.315764
Prabha Rajagopal, Taoufik Aghris, Fatima-Ezzahra Fettah, Sri Devi Ravana
{"title":"基于信息检索可查找性的相关文档聚类","authors":"Prabha Rajagopal, Taoufik Aghris, Fatima-Ezzahra Fettah, Sri Devi Ravana","doi":"10.4018/ijirr.315764","DOIUrl":null,"url":null,"abstract":"A user expresses their information need in the form of a query on an information retrieval (IR) system that retrieves a set of articles related to the query. The performance of the retrieval system is measured based on the retrieved content to the query, judged by expert topic assessors who are trained to find this relevant information. However, real users do not always succeed in finding relevant information in the retrieved list due to the amount of time and effort needed. This paper aims 1) to utilize the findability features to determine the amount of effort needed to find information from relevant documents using the machine learning approach and 2) to demonstrate changes in IR systems' performance when the effort is included in the evaluation. This study uses a natural language processing technique and unsupervised clustering approach to group documents by the amount of effort needed. The results show that relevant documents can be clustered using the k-means clustering approach, and the retrieval system performance varies by 23%, on average.","PeriodicalId":43345,"journal":{"name":"International Journal of Information Retrieval Research","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering of Relevant Documents Based on Findability Effort in Information Retrieval\",\"authors\":\"Prabha Rajagopal, Taoufik Aghris, Fatima-Ezzahra Fettah, Sri Devi Ravana\",\"doi\":\"10.4018/ijirr.315764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A user expresses their information need in the form of a query on an information retrieval (IR) system that retrieves a set of articles related to the query. The performance of the retrieval system is measured based on the retrieved content to the query, judged by expert topic assessors who are trained to find this relevant information. However, real users do not always succeed in finding relevant information in the retrieved list due to the amount of time and effort needed. This paper aims 1) to utilize the findability features to determine the amount of effort needed to find information from relevant documents using the machine learning approach and 2) to demonstrate changes in IR systems' performance when the effort is included in the evaluation. This study uses a natural language processing technique and unsupervised clustering approach to group documents by the amount of effort needed. The results show that relevant documents can be clustered using the k-means clustering approach, and the retrieval system performance varies by 23%, on average.\",\"PeriodicalId\":43345,\"journal\":{\"name\":\"International Journal of Information Retrieval Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Retrieval Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijirr.315764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Retrieval Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijirr.315764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

用户在信息检索(IR)系统上以查询的形式表达其信息需求,该系统检索与该查询相关的一组文章。检索系统的性能是根据检索到的查询内容来衡量的,由经过培训的专家主题评估员来判断,他们可以找到相关的信息。然而,由于需要大量的时间和精力,实际用户并不总是能够成功地在检索列表中找到相关信息。本文的目的是1)利用可查找性特征来确定使用机器学习方法从相关文档中查找信息所需的工作量;2)当工作量包含在评估中时,展示IR系统性能的变化。本研究使用自然语言处理技术和无监督聚类方法根据所需的工作量对文档进行分组。结果表明,使用k-means聚类方法可以对相关文档进行聚类,检索系统的性能平均下降23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering of Relevant Documents Based on Findability Effort in Information Retrieval
A user expresses their information need in the form of a query on an information retrieval (IR) system that retrieves a set of articles related to the query. The performance of the retrieval system is measured based on the retrieved content to the query, judged by expert topic assessors who are trained to find this relevant information. However, real users do not always succeed in finding relevant information in the retrieved list due to the amount of time and effort needed. This paper aims 1) to utilize the findability features to determine the amount of effort needed to find information from relevant documents using the machine learning approach and 2) to demonstrate changes in IR systems' performance when the effort is included in the evaluation. This study uses a natural language processing technique and unsupervised clustering approach to group documents by the amount of effort needed. The results show that relevant documents can be clustered using the k-means clustering approach, and the retrieval system performance varies by 23%, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Retrieval Research
International Journal of Information Retrieval Research COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
64
期刊最新文献
Effective Information Retrieval Framework for Twitter Data Analytics A New Scalable Deep Learning Model of Pattern Recognition for Medical Diagnosis Using Model Aggregation and Model Selection Promoting Document Relevance Using Query Term Proximity for Exploratory Search Clustering of Relevant Documents Based on Findability Effort in Information Retrieval Template based Question Answering System Over Semantic Web
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1