疏水有机半导体在水中溶解的柔性芳香两亲三元化

Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao
{"title":"疏水有机半导体在水中溶解的柔性芳香两亲三元化","authors":"Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao","doi":"10.1055/a-2037-2786","DOIUrl":null,"url":null,"abstract":"Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"5 1","pages":"84 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flexible Aromatic Amphiphilic Trication for the Solubilization of Hydrophobic Organic Semiconductors in Water\",\"authors\":\"Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao\",\"doi\":\"10.1055/a-2037-2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.\",\"PeriodicalId\":93348,\"journal\":{\"name\":\"Organic Materials\",\"volume\":\"5 1\",\"pages\":\"84 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2037-2786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2037-2786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两亲试剂被广泛用于溶解各种疏水分子,尤其是药物。近年来,芳香族两亲物作为一类新的分子出现在水中,用于溶解疏水性有机半导体。然而,这些系统的合成涉及几个步骤,并且通常需要使用昂贵的金属催化剂。本文介绍了一种新型柔性芳香族两亲三聚物(FAT)的设计、合成及其在疏水性有机半导体增溶中的应用。FAT是在不使用任何昂贵金属催化剂的情况下分两步合成的。我们观察到FAT在水中自组装成由疏水性萘酰亚胺单元组成的双层二维(2D)纳米片。FAT被发现通过将各种疏水性有机半导体(如苝、苝二亚胺(PDI)和C60)封装到其疏水域中而有效地溶解在水中。此外,FAT还探索了2D共轭梯形聚合物TQBQ在水中的增溶作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flexible Aromatic Amphiphilic Trication for the Solubilization of Hydrophobic Organic Semiconductors in Water
Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Towards the Tetrabenzo-Fused Circumazulene via In-Solution and On-Surface Synthesis Metal-Catalyzed Multi-Component Approach to Quinoline-Linked Covalent Organic Frameworks 2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application A Nonbenzenoid 3D Nanographene Containing 5/6/7/8-Membered Rings Diazananographene with Quadruple [5]Helicene Units: Synthesis, Optical Properties, and Supramolecular Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1