TiO2-Ag纳米颗粒在菠菜种子中的接种

F. Delgado, J. Acosta, Benyi Juliana Marín Gallego
{"title":"TiO2-Ag纳米颗粒在菠菜种子中的接种","authors":"F. Delgado, J. Acosta, Benyi Juliana Marín Gallego","doi":"10.23850/22565035.1659","DOIUrl":null,"url":null,"abstract":"Spinach is consumed for its valuable nutritional contributions. However, in Colombia, this crop has been of little interest in the research area due to its low production. On the other hand, the nanotechnology that can be used in agriculture to prevent or control diseases in crops through the application of nanoparticles (NPs) is emerging as a high potential subject in our country. In this work, the inoculation of suspensions of titanium dioxide NPs with the incorporation of silver (TiO2- Ag) in spinach seeds was evaluated. The NPs were synthesized through Sol-gel method and characterized by means of X-ray diffraction; suspensions of these powder samples of grain size between 7 and 26 nm were prepared at different concentrations for inoculation. In comparison with the control group (without inoculation), highest plant growth was obtained with NPs of the lowest size and 2 % concentration. It possibly due to the contribution in the photosynthesis process and antimicrobial role of incorporated TiO2-Ag. The photsynthetic activity of the plants from control and treated groups was measured by the photoacoustic technique and it was found that the plants treated with the smallest NPs suspension, at a concentration between 0.25 and 2 %, presented a rate of oxygen evolution similar to control group. These results indicate that the treatment with NPs of TiO2-Ag between 7 and 8 nm at low concentration can improve the growth without drastic alteration of the photosynthetic rate of spinach plants, which can be an efficient alternative for improvement in crop production.","PeriodicalId":52712,"journal":{"name":"Informador Tecnico","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INOCULACIÓN DE NANOPARTÍCULAS DE TIO2-AG EN SEMILLAS DE ESPINACA\",\"authors\":\"F. Delgado, J. Acosta, Benyi Juliana Marín Gallego\",\"doi\":\"10.23850/22565035.1659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinach is consumed for its valuable nutritional contributions. However, in Colombia, this crop has been of little interest in the research area due to its low production. On the other hand, the nanotechnology that can be used in agriculture to prevent or control diseases in crops through the application of nanoparticles (NPs) is emerging as a high potential subject in our country. In this work, the inoculation of suspensions of titanium dioxide NPs with the incorporation of silver (TiO2- Ag) in spinach seeds was evaluated. The NPs were synthesized through Sol-gel method and characterized by means of X-ray diffraction; suspensions of these powder samples of grain size between 7 and 26 nm were prepared at different concentrations for inoculation. In comparison with the control group (without inoculation), highest plant growth was obtained with NPs of the lowest size and 2 % concentration. It possibly due to the contribution in the photosynthesis process and antimicrobial role of incorporated TiO2-Ag. The photsynthetic activity of the plants from control and treated groups was measured by the photoacoustic technique and it was found that the plants treated with the smallest NPs suspension, at a concentration between 0.25 and 2 %, presented a rate of oxygen evolution similar to control group. These results indicate that the treatment with NPs of TiO2-Ag between 7 and 8 nm at low concentration can improve the growth without drastic alteration of the photosynthetic rate of spinach plants, which can be an efficient alternative for improvement in crop production.\",\"PeriodicalId\":52712,\"journal\":{\"name\":\"Informador Tecnico\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informador Tecnico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23850/22565035.1659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informador Tecnico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23850/22565035.1659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人们食用菠菜是因为它具有宝贵的营养价值。然而,在哥伦比亚,由于产量低,这种作物在研究领域几乎没有兴趣。另一方面,通过应用纳米颗粒(NP)在农业中预防或控制作物疾病的纳米技术在我国正成为一个极具潜力的学科。在这项工作中,评估了在菠菜种子中掺入银(TiO2-Ag)的二氧化钛纳米粒子悬浮液的接种。采用溶胶-凝胶法合成了纳米颗粒,并用X射线衍射对其进行了表征;在不同浓度下制备这些粒度在7和26nm之间的粉末样品的悬浮液用于接种。与对照组(未接种)相比,用最小尺寸和2%浓度的NP获得最高的植物生长。这可能是由于掺入的TiO2-Ag在光合作用过程中的贡献和抗菌作用。通过光声技术测量了来自对照组和处理组的植物的光合成活性,发现用浓度在0.25%和2%之间的最小NPs悬浮液处理的植物表现出与对照组相似的析氧速率。这些结果表明,用7和8nm之间的低浓度TiO2-Ag NP处理可以在不显著改变菠菜植物光合速率的情况下改善菠菜的生长,这可以是改善作物生产的有效替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INOCULACIÓN DE NANOPARTÍCULAS DE TIO2-AG EN SEMILLAS DE ESPINACA
Spinach is consumed for its valuable nutritional contributions. However, in Colombia, this crop has been of little interest in the research area due to its low production. On the other hand, the nanotechnology that can be used in agriculture to prevent or control diseases in crops through the application of nanoparticles (NPs) is emerging as a high potential subject in our country. In this work, the inoculation of suspensions of titanium dioxide NPs with the incorporation of silver (TiO2- Ag) in spinach seeds was evaluated. The NPs were synthesized through Sol-gel method and characterized by means of X-ray diffraction; suspensions of these powder samples of grain size between 7 and 26 nm were prepared at different concentrations for inoculation. In comparison with the control group (without inoculation), highest plant growth was obtained with NPs of the lowest size and 2 % concentration. It possibly due to the contribution in the photosynthesis process and antimicrobial role of incorporated TiO2-Ag. The photsynthetic activity of the plants from control and treated groups was measured by the photoacoustic technique and it was found that the plants treated with the smallest NPs suspension, at a concentration between 0.25 and 2 %, presented a rate of oxygen evolution similar to control group. These results indicate that the treatment with NPs of TiO2-Ag between 7 and 8 nm at low concentration can improve the growth without drastic alteration of the photosynthetic rate of spinach plants, which can be an efficient alternative for improvement in crop production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
Funcionalización de un textil de algodón para otorgar capacidad de conducción eléctrica mediante la incorporación de óxido de grafeno reducido Conceptos económicos de innovación en la valoración tecnológica de MiPymes colombianas desarrolladoras de software Uso de quitosano como coagulante y floculante en el tratamiento de aguas residuales provenientes de plantas de pegamento y pintura Pérdida de suelo por erosión hídrica superficial en caña de azúcar para producción de panela Servicios ecosistémicos del suelo en la producción de leche en Chitagá, Norte de Santander, Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1