在不同横向配筋方式的梁柱节点中使用UHPFRC的影响

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Frattura ed Integrita Strutturale Pub Date : 2023-03-21 DOI:10.3221/igf-esis.64.02
A. Abdo, H. Mohamed, Talaat Ryad, S. M. Ahmed
{"title":"在不同横向配筋方式的梁柱节点中使用UHPFRC的影响","authors":"A. Abdo, H. Mohamed, Talaat Ryad, S. M. Ahmed","doi":"10.3221/igf-esis.64.02","DOIUrl":null,"url":null,"abstract":"This research studies and assesses the possibility of employing UHPFRC in exterior beam-column joints (BCJs). Eight specimens with various concrete material characteristics and steel reinforcing details are cast and examined under repeated loads. Normal concrete with seismic reinforcing details is used as a control specimen. For certain specimens, UHPC, UHPFRC with 1% steel fiber, and UHPFRC with 2% steel fiber are poured into all BCJs, and others are poured into the critical zone only. The consequences of removing stirrups from the joint were studied. All specimens' crack patterns, hysteresis and envelope curves, ductility factor, stiffness degradation‎, and energy dissipation are assessed and corresponded to the control sample. The results demonstrate that  UHPFRC strengthened the joint, prevented crack development and extension and the shear failure in the joint, and formed the plastic hinge in the beams. UHPFRC outperforms normal concrete with seismic reinforcing details and UHPC without steel fiber in bearing capacity, ductility, stiffness, and energy dissipation. UHPFRC with 1% steel fiber enhanced joint behavior, while UHPFRC with 2% steel fiber was better. Casting the whole sample with UHPFRC achieved very little improvement. The presence of stirrups in the UHPFRC beam-column joint has little effect on its properties. It is more economical to casting UHPFRC in the joint zone only and reduce or eliminate these stirrups in the case of UHPFRC","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of utilizing UHPFRC in beam-column joints with different patterns of transverse reinforcement\",\"authors\":\"A. Abdo, H. Mohamed, Talaat Ryad, S. M. Ahmed\",\"doi\":\"10.3221/igf-esis.64.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research studies and assesses the possibility of employing UHPFRC in exterior beam-column joints (BCJs). Eight specimens with various concrete material characteristics and steel reinforcing details are cast and examined under repeated loads. Normal concrete with seismic reinforcing details is used as a control specimen. For certain specimens, UHPC, UHPFRC with 1% steel fiber, and UHPFRC with 2% steel fiber are poured into all BCJs, and others are poured into the critical zone only. The consequences of removing stirrups from the joint were studied. All specimens' crack patterns, hysteresis and envelope curves, ductility factor, stiffness degradation‎, and energy dissipation are assessed and corresponded to the control sample. The results demonstrate that  UHPFRC strengthened the joint, prevented crack development and extension and the shear failure in the joint, and formed the plastic hinge in the beams. UHPFRC outperforms normal concrete with seismic reinforcing details and UHPC without steel fiber in bearing capacity, ductility, stiffness, and energy dissipation. UHPFRC with 1% steel fiber enhanced joint behavior, while UHPFRC with 2% steel fiber was better. Casting the whole sample with UHPFRC achieved very little improvement. The presence of stirrups in the UHPFRC beam-column joint has little effect on its properties. It is more economical to casting UHPFRC in the joint zone only and reduce or eliminate these stirrups in the case of UHPFRC\",\"PeriodicalId\":38546,\"journal\":{\"name\":\"Frattura ed Integrita Strutturale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrita Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.64.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.64.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究并评估了在外部梁柱节点(BCJs)中使用UHPFRC的可能性。八个具有不同混凝土材料特性和钢筋细节的试件在重复荷载下进行浇筑和检验。带抗震加固细节的普通混凝土作为对照试件。对于某些试件,将UHPC、1%钢纤维的UHPFRC和2%钢纤维的UHPFRC浇筑在所有bcj中,其他试件仅浇筑在临界区。研究了从关节上移除马镫的后果。所有试件的裂纹模式、迟滞和包络曲线、延性系数、刚度退化和能量耗散均与对照试样相对应。结果表明:UHPFRC加固了节点,阻止了节点裂缝的扩展和剪切破坏,形成了梁内的塑性铰;uhfrc在承载能力、延性、刚度和能量耗散方面优于具有抗震增强细节的普通混凝土和没有钢纤维的UHPC。添加1%钢纤维的UHPFRC增强了接头性能,而添加2%钢纤维的UHPFRC性能更好。用UHPFRC浇铸整个试样的效果改善甚微。箍筋的存在对UHPFRC梁柱节点的性能影响不大。在UHPFRC的情况下,仅在接头区域浇筑UHPFRC,减少或消除这些马镫是更经济的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of utilizing UHPFRC in beam-column joints with different patterns of transverse reinforcement
This research studies and assesses the possibility of employing UHPFRC in exterior beam-column joints (BCJs). Eight specimens with various concrete material characteristics and steel reinforcing details are cast and examined under repeated loads. Normal concrete with seismic reinforcing details is used as a control specimen. For certain specimens, UHPC, UHPFRC with 1% steel fiber, and UHPFRC with 2% steel fiber are poured into all BCJs, and others are poured into the critical zone only. The consequences of removing stirrups from the joint were studied. All specimens' crack patterns, hysteresis and envelope curves, ductility factor, stiffness degradation‎, and energy dissipation are assessed and corresponded to the control sample. The results demonstrate that  UHPFRC strengthened the joint, prevented crack development and extension and the shear failure in the joint, and formed the plastic hinge in the beams. UHPFRC outperforms normal concrete with seismic reinforcing details and UHPC without steel fiber in bearing capacity, ductility, stiffness, and energy dissipation. UHPFRC with 1% steel fiber enhanced joint behavior, while UHPFRC with 2% steel fiber was better. Casting the whole sample with UHPFRC achieved very little improvement. The presence of stirrups in the UHPFRC beam-column joint has little effect on its properties. It is more economical to casting UHPFRC in the joint zone only and reduce or eliminate these stirrups in the case of UHPFRC
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
期刊最新文献
Investigation on Microstructure, Hardness, Wear behavior and Fracture Surface Analysis of Strontium (Sr) and Calcium (Ca) Content A357 Modified Alloy by Statistical Technique Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering Microstructure Characterization, Mechanical and Wear Behavior of Silicon Carbide and Neem Leaf Powder Reinforced AL7075 Alloy hybrid MMC’s. Mechanisms for Introduction of Pseudo Ductility in Fiber Reinforced Polymer Composites- A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1