rcm:用于回归控制方法的命令

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-12-01 DOI:10.1177/1536867X221140960
Guanpeng Yan, Qian Chen
{"title":"rcm:用于回归控制方法的命令","authors":"Guanpeng Yan, Qian Chen","doi":"10.1177/1536867X221140960","DOIUrl":null,"url":null,"abstract":"The regression control method, also known as the panel-data approach for program evaluation (Hsiao, Ching, and Wan, 2012, Journal of Applied Econometrics 27: 705–740; Hsiao and Zhou, 2019, Journal of Applied Econometrics 34: 463–481), is a convenient method for causal inference in panel data that exploits cross-sectional correlation to construct counterfactual outcomes for a single treated unit by linear regression. In this article, we present the rcm command, which efficiently implements the regression control method with or without covariates. Available methods for model selection include best subset, lasso, and forward stepwise and backward stepwise regression, while available selection criteria include the corrected Akaike information criterion, the Akaike information criterion, the Bayesian information criterion, the modified Bayesian information criterion, and cross-validation. Estimation and counterfactual predictions can be made by ordinary least squares, lasso, or postlasso ordinary least squares. For statistical inference, both the in-space placebo test using fake treatment units and the in-time placebo test using a fake treatment time can be implemented. The rcm command produces a series of graphs for visualization along the way. We demonstrate the use of the rcm command by revisiting classic examples of political and economic integration between Hong Kong and mainland China (Hsiao, Ching, and Wan 2012) and German reunification (Abadie, Diamond, and Hainmueller, 2015, American Journal of Political Science 59: 495–510).","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"rcm: A command for the regression control method\",\"authors\":\"Guanpeng Yan, Qian Chen\",\"doi\":\"10.1177/1536867X221140960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regression control method, also known as the panel-data approach for program evaluation (Hsiao, Ching, and Wan, 2012, Journal of Applied Econometrics 27: 705–740; Hsiao and Zhou, 2019, Journal of Applied Econometrics 34: 463–481), is a convenient method for causal inference in panel data that exploits cross-sectional correlation to construct counterfactual outcomes for a single treated unit by linear regression. In this article, we present the rcm command, which efficiently implements the regression control method with or without covariates. Available methods for model selection include best subset, lasso, and forward stepwise and backward stepwise regression, while available selection criteria include the corrected Akaike information criterion, the Akaike information criterion, the Bayesian information criterion, the modified Bayesian information criterion, and cross-validation. Estimation and counterfactual predictions can be made by ordinary least squares, lasso, or postlasso ordinary least squares. For statistical inference, both the in-space placebo test using fake treatment units and the in-time placebo test using a fake treatment time can be implemented. The rcm command produces a series of graphs for visualization along the way. We demonstrate the use of the rcm command by revisiting classic examples of political and economic integration between Hong Kong and mainland China (Hsiao, Ching, and Wan 2012) and German reunification (Abadie, Diamond, and Hainmueller, 2015, American Journal of Political Science 59: 495–510).\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X221140960\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221140960","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2

摘要

回归控制方法,也称为项目评估的面板数据方法(Hsiao,Ching,and Wan,2012,Journal of Applied Econometrics 27:705–740;Hsiao和Zhou,2019,Journal ofApplied Economictrics 34:463–481),是一种在面板数据中进行因果推断的方便方法,该方法利用横截面相关性通过线性回归构建单个治疗单位的反事实结果。在本文中,我们提出了rcm命令,它有效地实现了有或无协变量的回归控制方法。可用的模型选择方法包括最佳子集、套索、前向逐步回归和后向逐步回归,而可用的选择标准包括校正的Akaike信息标准、Akaike消息标准、贝叶斯信息标准、修改的贝叶斯信息标准和交叉验证。估计和反事实预测可以通过普通最小二乘法、套索法或套索后普通最小二乘法进行。对于统计推断,使用假治疗单位的空间内安慰剂测试和使用假治疗时间的时间内安慰剂测试都可以实现。rcm命令生成一系列图形,用于沿途的可视化。我们通过回顾香港和中国大陆之间政治和经济一体化的经典例子(Hsiao,Ching,and Wan,2012)和德国统一(Abadie,Diamond,and Hainmueller,2015,《美国政治学杂志》59:495–510),展示了rcm命令的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
rcm: A command for the regression control method
The regression control method, also known as the panel-data approach for program evaluation (Hsiao, Ching, and Wan, 2012, Journal of Applied Econometrics 27: 705–740; Hsiao and Zhou, 2019, Journal of Applied Econometrics 34: 463–481), is a convenient method for causal inference in panel data that exploits cross-sectional correlation to construct counterfactual outcomes for a single treated unit by linear regression. In this article, we present the rcm command, which efficiently implements the regression control method with or without covariates. Available methods for model selection include best subset, lasso, and forward stepwise and backward stepwise regression, while available selection criteria include the corrected Akaike information criterion, the Akaike information criterion, the Bayesian information criterion, the modified Bayesian information criterion, and cross-validation. Estimation and counterfactual predictions can be made by ordinary least squares, lasso, or postlasso ordinary least squares. For statistical inference, both the in-space placebo test using fake treatment units and the in-time placebo test using a fake treatment time can be implemented. The rcm command produces a series of graphs for visualization along the way. We demonstrate the use of the rcm command by revisiting classic examples of political and economic integration between Hong Kong and mainland China (Hsiao, Ching, and Wan 2012) and German reunification (Abadie, Diamond, and Hainmueller, 2015, American Journal of Political Science 59: 495–510).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
posw: A command for the stepwise Neyman-orthogonal estimator A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models Visualizing uncertainty in a two-dimensional estimate using confidence and comparison regions Color palettes for Stata graphics: An update Pseudo-observations in a multistate setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1