O. Dobrushina, Z. Gadzhieva, S. Morozova, E. Kremneva, M. Krotenkova, L. Dobrynina
{"title":"额叶皮质在轻度认知障碍中的代偿作用:确定神经调节的目标","authors":"O. Dobrushina, Z. Gadzhieva, S. Morozova, E. Kremneva, M. Krotenkova, L. Dobrynina","doi":"10.15540/nr.6.1.3","DOIUrl":null,"url":null,"abstract":"Introduction: Development of individualized neuromodulation techniques for mild cognitive impairment (MCI) is a feasible practical goal. Preliminary research exploring the brain-level compensatory reserves on the base of neuroimaging is necessary. Methods: Twenty-one older adults, representing a continuum from healthy norm to MCI, underwent functional MRI while performing two executive tasks—a modified Stroop task and selective counting. A functional activation and connectivity analysis were conducted with the inclusion of a BRIEF–MoCA covariate. This variable represented the difference between the real-life performance measured by Behavior Rating Inventory of Executive Function (BRIEF) and the level of cognitive deficit measured by Montreal Cognitive Assessment (MoCA) Scale, an ability to compensate for impairment. Results: Both tasks were associated with activation of areas within the frontoparietal control network, along with the supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. A widespread increase in the connectivity of the pre-SMA was observed during the tasks. The BRIEF–MoCA value correlated, first, with connectivity of the left dorsolateral prefrontal cortex (LDLPFC) and, second, with enrollment of the occipital cortex during the counting task. Conclusion: The developed neuroimaging technique allows identification of the functionally salient target within the LDLPFC in patients with MCI.","PeriodicalId":37439,"journal":{"name":"NeuroRegulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Compensatory Role of the Frontal Cortex in Mild Cognitive Impairment: Identifying the Target for Neuromodulation\",\"authors\":\"O. Dobrushina, Z. Gadzhieva, S. Morozova, E. Kremneva, M. Krotenkova, L. Dobrynina\",\"doi\":\"10.15540/nr.6.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Development of individualized neuromodulation techniques for mild cognitive impairment (MCI) is a feasible practical goal. Preliminary research exploring the brain-level compensatory reserves on the base of neuroimaging is necessary. Methods: Twenty-one older adults, representing a continuum from healthy norm to MCI, underwent functional MRI while performing two executive tasks—a modified Stroop task and selective counting. A functional activation and connectivity analysis were conducted with the inclusion of a BRIEF–MoCA covariate. This variable represented the difference between the real-life performance measured by Behavior Rating Inventory of Executive Function (BRIEF) and the level of cognitive deficit measured by Montreal Cognitive Assessment (MoCA) Scale, an ability to compensate for impairment. Results: Both tasks were associated with activation of areas within the frontoparietal control network, along with the supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. A widespread increase in the connectivity of the pre-SMA was observed during the tasks. The BRIEF–MoCA value correlated, first, with connectivity of the left dorsolateral prefrontal cortex (LDLPFC) and, second, with enrollment of the occipital cortex during the counting task. Conclusion: The developed neuroimaging technique allows identification of the functionally salient target within the LDLPFC in patients with MCI.\",\"PeriodicalId\":37439,\"journal\":{\"name\":\"NeuroRegulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRegulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15540/nr.6.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRegulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15540/nr.6.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
The Compensatory Role of the Frontal Cortex in Mild Cognitive Impairment: Identifying the Target for Neuromodulation
Introduction: Development of individualized neuromodulation techniques for mild cognitive impairment (MCI) is a feasible practical goal. Preliminary research exploring the brain-level compensatory reserves on the base of neuroimaging is necessary. Methods: Twenty-one older adults, representing a continuum from healthy norm to MCI, underwent functional MRI while performing two executive tasks—a modified Stroop task and selective counting. A functional activation and connectivity analysis were conducted with the inclusion of a BRIEF–MoCA covariate. This variable represented the difference between the real-life performance measured by Behavior Rating Inventory of Executive Function (BRIEF) and the level of cognitive deficit measured by Montreal Cognitive Assessment (MoCA) Scale, an ability to compensate for impairment. Results: Both tasks were associated with activation of areas within the frontoparietal control network, along with the supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. A widespread increase in the connectivity of the pre-SMA was observed during the tasks. The BRIEF–MoCA value correlated, first, with connectivity of the left dorsolateral prefrontal cortex (LDLPFC) and, second, with enrollment of the occipital cortex during the counting task. Conclusion: The developed neuroimaging technique allows identification of the functionally salient target within the LDLPFC in patients with MCI.
期刊介绍:
NeuroRegulation is a peer-reviewed journal providing an integrated, multidisciplinary perspective on clinically relevant research, treatment, reviews, and public policy for neuroregulation and neurotherapy. NeuroRegulation publishes important findings in these fields with a focus on electroencephalography (EEG), neurofeedback (EEG biofeedback), quantitative electroencephalography (qEEG), psychophysiology, biofeedback, heart rate variability, photobiomodulation, repetitive Transcranial Magnetic Simulation (rTMS) and transcranial Direct Current Stimulation (tDCS); with a focus on treatment of psychiatric, mind-body, and neurological disorders. In addition to research findings and reviews, it is important to stress that publication of case reports is always useful in furthering the advancement of an intervention for both clinical and normative functioning. We strive for high quality and interesting empirical topics presented in a rigorous and scholarly manner. The journal draws from expertise inside and outside of the International Society for Neurofeedback & Research (ISNR) to deliver material which integrates the diverse aspects of the field, to include: *basic science *clinical aspects *treatment evaluation *philosophy *training and certification issues *technology and equipment