{"title":"基于静态和动态方法的动态因子模型预测性能比较","authors":"F. Marra","doi":"10.2139/ssrn.2912916","DOIUrl":null,"url":null,"abstract":"Abstract We present a comparison of the forecasting performances of three Dynamic Factor Models on a large monthly data panel of macroeconomic and financial time series for the UE economy. The first model relies on static principal-component and was introduced by Stock and Watson (2002a, b). The second is based on generalized principal components and it was introduced by Forni, Hallin, Lippi and Reichlin (2000, 2005). The last model has been recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015, 2016). The data panel is split into two parts: the calibration sample, from February 1986 to December 2000, is used to select the most performing specification for each class of models in a in- sample environment, and the proper sample, from January 2001 to November 2015, is used to compare the performances of the selected models in an out-of-sample environment. The metholodogical approach is analogous to Forni, Giovannelli, Lippi and Soccorsi (2016), but also the size of the rolling window is empirically estimated in the calibration process to achieve more robustness. We find that, on the proper sample, the last model is the most performing for the Inflation. However, mixed evidencies appear over the proper sample for the Industrial Production.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"8 1","pages":"43 - 66"},"PeriodicalIF":0.3000,"publicationDate":"2017-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A forecasting performance comparison of dynamic factor models based on static and dynamic methods\",\"authors\":\"F. Marra\",\"doi\":\"10.2139/ssrn.2912916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a comparison of the forecasting performances of three Dynamic Factor Models on a large monthly data panel of macroeconomic and financial time series for the UE economy. The first model relies on static principal-component and was introduced by Stock and Watson (2002a, b). The second is based on generalized principal components and it was introduced by Forni, Hallin, Lippi and Reichlin (2000, 2005). The last model has been recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015, 2016). The data panel is split into two parts: the calibration sample, from February 1986 to December 2000, is used to select the most performing specification for each class of models in a in- sample environment, and the proper sample, from January 2001 to November 2015, is used to compare the performances of the selected models in an out-of-sample environment. The metholodogical approach is analogous to Forni, Giovannelli, Lippi and Soccorsi (2016), but also the size of the rolling window is empirically estimated in the calibration process to achieve more robustness. We find that, on the proper sample, the last model is the most performing for the Inflation. However, mixed evidencies appear over the proper sample for the Industrial Production.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"8 1\",\"pages\":\"43 - 66\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2912916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2912916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A forecasting performance comparison of dynamic factor models based on static and dynamic methods
Abstract We present a comparison of the forecasting performances of three Dynamic Factor Models on a large monthly data panel of macroeconomic and financial time series for the UE economy. The first model relies on static principal-component and was introduced by Stock and Watson (2002a, b). The second is based on generalized principal components and it was introduced by Forni, Hallin, Lippi and Reichlin (2000, 2005). The last model has been recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015, 2016). The data panel is split into two parts: the calibration sample, from February 1986 to December 2000, is used to select the most performing specification for each class of models in a in- sample environment, and the proper sample, from January 2001 to November 2015, is used to compare the performances of the selected models in an out-of-sample environment. The metholodogical approach is analogous to Forni, Giovannelli, Lippi and Soccorsi (2016), but also the size of the rolling window is empirically estimated in the calibration process to achieve more robustness. We find that, on the proper sample, the last model is the most performing for the Inflation. However, mixed evidencies appear over the proper sample for the Industrial Production.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.