{"title":"潜在的局部到单位模型","authors":"Xiaohu Wang, Jun Yu","doi":"10.1080/07474938.2023.2215034","DOIUrl":null,"url":null,"abstract":"Abstract The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter . For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when . The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"586 - 611"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent local-to-unity models\",\"authors\":\"Xiaohu Wang, Jun Yu\",\"doi\":\"10.1080/07474938.2023.2215034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter . For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when . The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"586 - 611\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2215034\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2215034","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Abstract The article studies a class of state-space models where the state equation is a local-to-unity process. The parameter of interest is the persistence parameter of the latent process. The large sample theory for the least squares (LS) estimator and an instrumental variable (IV) estimator of the persistent parameter in the autoregressive (AR) representation of the model is developed under two sets of conditions. In the first set of conditions, the measurement error is independent and identically distributed, and the error term in the state equation is stationary and fractionally integrated with memory parameter . For both estimators, the convergence rate and the asymptotic distribution crucially depend on d. The LS estimator has a severe downward bias, which is aggravated even more by the measurement error when . The IV estimator eliminates the effects of the measurement error and reduces the bias. In the second set of conditions, the measurement error is independent but not necessarily identically distributed, and the error term in the state equation is strongly mixing. In this case, the IV estimator still leads to a smaller bias than the LS estimator. Special cases of our models and results in relation to those in the literature are discussed.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.