考虑管状构件有限元建模的波斯湾Ressalat导管套承载力评价

M. Erfani, M. R. Tabeshpour, H. Sayyaadi
{"title":"考虑管状构件有限元建模的波斯湾Ressalat导管套承载力评价","authors":"M. Erfani, M. R. Tabeshpour, H. Sayyaadi","doi":"10.29252/ijcoe.3.2.55","DOIUrl":null,"url":null,"abstract":"Article History: Received: 11 May. 2019 Accepted: 10 Sep. 2019 The capacity curve obtained from the pushover analysis of jacket-type offshore platforms gives their structural performance levels, ultimate capacity and ductility. Accurate estimation of structural capacity curve is of great importance. Accurate modeling of the global and local buckling of compression tubular members in a correct form is an effective part of studying the behavior of offshore jackets under all various types of loading conditions at any given time of their life. Modeling of compressive braces by shell or solid elements when the imperfections are applied leads to deformations due to local buckling based on buckling modes. This paper aims to achieve more accurate compressive behavior of compression members. The ABAQUS finite element software has been used for this purpose. Regarding to the results achieved from investigation of buckling in tubular members proper elements have been introduced to investigate the global and local buckling phenomena. Then pushovers results of Ressalat jacket with conventional modeling versus more accurate modeling proposed in this paper for compressive members have been compared as a case study. According to the results applying improper mesh size for compressive members can under-predict the ductility by 33% and underestimate the lateral loading capacity up to 8%. Finally, ISO equations and Marshall strut theory have been applied to investigate critical buckling load and post-buckling response of tubular braces. The innovation of this paper is investigating the interaction of global and local buckling in the braces of jacket with 1-Dimentional elements using ISO equations and buckling envelope derived from the solid element results, which results in low computational costs.","PeriodicalId":33914,"journal":{"name":"International Journal of Coastal and Offshore Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity Evaluation of Ressalat Jacket of Persian Gulf Considering Proper Finite Element Modeling of Tubular Members\",\"authors\":\"M. Erfani, M. R. Tabeshpour, H. Sayyaadi\",\"doi\":\"10.29252/ijcoe.3.2.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Article History: Received: 11 May. 2019 Accepted: 10 Sep. 2019 The capacity curve obtained from the pushover analysis of jacket-type offshore platforms gives their structural performance levels, ultimate capacity and ductility. Accurate estimation of structural capacity curve is of great importance. Accurate modeling of the global and local buckling of compression tubular members in a correct form is an effective part of studying the behavior of offshore jackets under all various types of loading conditions at any given time of their life. Modeling of compressive braces by shell or solid elements when the imperfections are applied leads to deformations due to local buckling based on buckling modes. This paper aims to achieve more accurate compressive behavior of compression members. The ABAQUS finite element software has been used for this purpose. Regarding to the results achieved from investigation of buckling in tubular members proper elements have been introduced to investigate the global and local buckling phenomena. Then pushovers results of Ressalat jacket with conventional modeling versus more accurate modeling proposed in this paper for compressive members have been compared as a case study. According to the results applying improper mesh size for compressive members can under-predict the ductility by 33% and underestimate the lateral loading capacity up to 8%. Finally, ISO equations and Marshall strut theory have been applied to investigate critical buckling load and post-buckling response of tubular braces. The innovation of this paper is investigating the interaction of global and local buckling in the braces of jacket with 1-Dimentional elements using ISO equations and buckling envelope derived from the solid element results, which results in low computational costs.\",\"PeriodicalId\":33914,\"journal\":{\"name\":\"International Journal of Coastal and Offshore Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coastal and Offshore Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/ijcoe.3.2.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coastal and Offshore Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/ijcoe.3.2.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章历史:接收时间:2019年5月11日接受时间:2019月10日从导管架式海上平台的推倒分析中获得的承载力曲线给出了其结构性能水平、极限承载力和延性。准确估算结构承载力曲线具有重要意义。以正确的形式对压缩管状构件的整体和局部屈曲进行精确建模,是研究海上导管架在其使用寿命的任何给定时间在各种类型的载荷条件下的行为的有效组成部分。当应用缺陷时,通过壳体或实体单元对压缩支撑进行建模会导致基于屈曲模式的局部屈曲变形。本文旨在实现受压构件更精确的受压性能。ABAQUS有限元软件已用于此目的。关于管状构件屈曲研究的结果,引入了适当的单元来研究整体和局部屈曲现象。然后,将Ressalat导管架采用传统建模与本文提出的更精确的受压构件建模的推覆结果作为案例研究进行了比较。根据结果,对受压构件采用不合适的网格尺寸可能会使延性降低33%,并低估高达8%的侧向承载力。最后,应用ISO方程和Marshall支柱理论研究了管支架的临界屈曲载荷和屈曲后响应。本文的创新之处在于,使用ISO方程和从实体单元结果导出的屈曲包络,研究了带有一维单元的导管架支架的整体和局部屈曲的相互作用,从而降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capacity Evaluation of Ressalat Jacket of Persian Gulf Considering Proper Finite Element Modeling of Tubular Members
Article History: Received: 11 May. 2019 Accepted: 10 Sep. 2019 The capacity curve obtained from the pushover analysis of jacket-type offshore platforms gives their structural performance levels, ultimate capacity and ductility. Accurate estimation of structural capacity curve is of great importance. Accurate modeling of the global and local buckling of compression tubular members in a correct form is an effective part of studying the behavior of offshore jackets under all various types of loading conditions at any given time of their life. Modeling of compressive braces by shell or solid elements when the imperfections are applied leads to deformations due to local buckling based on buckling modes. This paper aims to achieve more accurate compressive behavior of compression members. The ABAQUS finite element software has been used for this purpose. Regarding to the results achieved from investigation of buckling in tubular members proper elements have been introduced to investigate the global and local buckling phenomena. Then pushovers results of Ressalat jacket with conventional modeling versus more accurate modeling proposed in this paper for compressive members have been compared as a case study. According to the results applying improper mesh size for compressive members can under-predict the ductility by 33% and underestimate the lateral loading capacity up to 8%. Finally, ISO equations and Marshall strut theory have been applied to investigate critical buckling load and post-buckling response of tubular braces. The innovation of this paper is investigating the interaction of global and local buckling in the braces of jacket with 1-Dimentional elements using ISO equations and buckling envelope derived from the solid element results, which results in low computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Rationality for Engineers Part II- Heuristics and Biases Reliability analysis of Tension-Leg Platform Tendon with Respect to Fatigue Failure under Environmental Condition of Caspian Sea Integration of Geographical Information System and Tsunami generation/propagation models in the Makran region (North of the Arabian Sea) Simulation of Tidal in Khowr-e Musa by Using the TELEMAC Numerical ‎Model Impact of Hydrodynamic Forces on Morphodynamic Classification of Beaches in some parts of the Iranian coasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1