{"title":"混合沥青吸收板锥形太阳能热水器热性能试验研究","authors":"T. Phengpom, Jirasak Pukdum","doi":"10.1115/1.4055403","DOIUrl":null,"url":null,"abstract":"\n In the present research, an investigational study on thermal performance of a mixed asphalt conical solar water heater (MACSWH) was analyzed under field conditions. The key target of the present research is to evaluate the dynamics of heat and performance of a conical solar collector with an attached mixed asphalt as an absorber plate. In the current experimental test setup, the mixed asphalt as an absorber plate with a diameter of 0.20 m and thickness of 0.05 m was set in the middle of the focal area for accumulating the solar radiation, reflecting from a polished zinc conical reflector. The aperture diameter of the MACSWH was 0.45 m with a concentration ratio of 2.20. The copper pipe had a total length of 2 m, and the inclination angle of the conical was fixed at 15°. The experimental results provide evidence that the mixed asphalt set as an absorber plate at the center of the focal area was an effective practical approach to improve the performance of a conical solar collector. This method raises the maximum percentage difference between inlet water temperature and outlet water temperature by approximately 47.27%, while the maximum temperatures of absorber plate, copper pipe, and efficacy are at 82°C, 62°C, and 72% respectively.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on the Thermal Performance of a Conical Solar Water Heater using Mixed Asphalt Absorber Plate\",\"authors\":\"T. Phengpom, Jirasak Pukdum\",\"doi\":\"10.1115/1.4055403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present research, an investigational study on thermal performance of a mixed asphalt conical solar water heater (MACSWH) was analyzed under field conditions. The key target of the present research is to evaluate the dynamics of heat and performance of a conical solar collector with an attached mixed asphalt as an absorber plate. In the current experimental test setup, the mixed asphalt as an absorber plate with a diameter of 0.20 m and thickness of 0.05 m was set in the middle of the focal area for accumulating the solar radiation, reflecting from a polished zinc conical reflector. The aperture diameter of the MACSWH was 0.45 m with a concentration ratio of 2.20. The copper pipe had a total length of 2 m, and the inclination angle of the conical was fixed at 15°. The experimental results provide evidence that the mixed asphalt set as an absorber plate at the center of the focal area was an effective practical approach to improve the performance of a conical solar collector. This method raises the maximum percentage difference between inlet water temperature and outlet water temperature by approximately 47.27%, while the maximum temperatures of absorber plate, copper pipe, and efficacy are at 82°C, 62°C, and 72% respectively.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055403\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055403","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental Investigation on the Thermal Performance of a Conical Solar Water Heater using Mixed Asphalt Absorber Plate
In the present research, an investigational study on thermal performance of a mixed asphalt conical solar water heater (MACSWH) was analyzed under field conditions. The key target of the present research is to evaluate the dynamics of heat and performance of a conical solar collector with an attached mixed asphalt as an absorber plate. In the current experimental test setup, the mixed asphalt as an absorber plate with a diameter of 0.20 m and thickness of 0.05 m was set in the middle of the focal area for accumulating the solar radiation, reflecting from a polished zinc conical reflector. The aperture diameter of the MACSWH was 0.45 m with a concentration ratio of 2.20. The copper pipe had a total length of 2 m, and the inclination angle of the conical was fixed at 15°. The experimental results provide evidence that the mixed asphalt set as an absorber plate at the center of the focal area was an effective practical approach to improve the performance of a conical solar collector. This method raises the maximum percentage difference between inlet water temperature and outlet water temperature by approximately 47.27%, while the maximum temperatures of absorber plate, copper pipe, and efficacy are at 82°C, 62°C, and 72% respectively.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.