S. P. Bhale, A. Yadav, Pintu G. Pathare, S. Tekale, F. P. Franguelli, L. Kótai, R. Pawar
{"title":"4-[(2-羟基-4-甲氧基苯基)亚甲基氨基]-2,4-二氢-3H-1,2,4-三唑-3-硫酮过渡金属配合物的合成、表征及抗菌活性","authors":"S. P. Bhale, A. Yadav, Pintu G. Pathare, S. Tekale, F. P. Franguelli, L. Kótai, R. Pawar","doi":"10.17628/ecb.2020.9.430-435","DOIUrl":null,"url":null,"abstract":"A novel nitrogen containing 4-[(2-hydroxy-4-methoxyphenyl)methyleneamino]-2,4-dihydro-3H-1,2,4-triazole-3-thione ligand (H2L) was synthesized by using an equimolar ratio of 4-amino-1,2,4-triazole-3-thione and 2-hydroxy-4-methoxybenzaldehyde. A series of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized by using the ligand. The synthesized ligand and transition metal complexes were characterized by IR, 1H NMR, 13C NMR, Mass spectrometry, UV, XRD and TGA investigation methods. Spectral data suggests that the ligand acts as a tridentate SNO donor. Further, the synthesized H2L ligand and their metal complexes were screened for antimicrobial activity. The results of biological activities showed that the metal complexes have higher antifungal as well as antibacterial activity as compared to the parent H2L ligand against the tested microbes.","PeriodicalId":11880,"journal":{"name":"European Chemical Bulletin","volume":"9 1","pages":"430"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis, characterization and antimicrobial activity of transition metal complexes of 4-[(2-hydroxy-4-methoxyphenyl)methyleneamino]-2,4-dihydro-3H-1,2,4-triazole-3-thione\",\"authors\":\"S. P. Bhale, A. Yadav, Pintu G. Pathare, S. Tekale, F. P. Franguelli, L. Kótai, R. Pawar\",\"doi\":\"10.17628/ecb.2020.9.430-435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel nitrogen containing 4-[(2-hydroxy-4-methoxyphenyl)methyleneamino]-2,4-dihydro-3H-1,2,4-triazole-3-thione ligand (H2L) was synthesized by using an equimolar ratio of 4-amino-1,2,4-triazole-3-thione and 2-hydroxy-4-methoxybenzaldehyde. A series of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized by using the ligand. The synthesized ligand and transition metal complexes were characterized by IR, 1H NMR, 13C NMR, Mass spectrometry, UV, XRD and TGA investigation methods. Spectral data suggests that the ligand acts as a tridentate SNO donor. Further, the synthesized H2L ligand and their metal complexes were screened for antimicrobial activity. The results of biological activities showed that the metal complexes have higher antifungal as well as antibacterial activity as compared to the parent H2L ligand against the tested microbes.\",\"PeriodicalId\":11880,\"journal\":{\"name\":\"European Chemical Bulletin\",\"volume\":\"9 1\",\"pages\":\"430\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Chemical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17628/ecb.2020.9.430-435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Chemical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17628/ecb.2020.9.430-435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Synthesis, characterization and antimicrobial activity of transition metal complexes of 4-[(2-hydroxy-4-methoxyphenyl)methyleneamino]-2,4-dihydro-3H-1,2,4-triazole-3-thione
A novel nitrogen containing 4-[(2-hydroxy-4-methoxyphenyl)methyleneamino]-2,4-dihydro-3H-1,2,4-triazole-3-thione ligand (H2L) was synthesized by using an equimolar ratio of 4-amino-1,2,4-triazole-3-thione and 2-hydroxy-4-methoxybenzaldehyde. A series of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized by using the ligand. The synthesized ligand and transition metal complexes were characterized by IR, 1H NMR, 13C NMR, Mass spectrometry, UV, XRD and TGA investigation methods. Spectral data suggests that the ligand acts as a tridentate SNO donor. Further, the synthesized H2L ligand and their metal complexes were screened for antimicrobial activity. The results of biological activities showed that the metal complexes have higher antifungal as well as antibacterial activity as compared to the parent H2L ligand against the tested microbes.