{"title":"涉及贝塞尔函数的新特征值估计","authors":"F. Chami, N. Ginoux, Georges Habib","doi":"10.5565/PUBLMAT6522109","DOIUrl":null,"url":null,"abstract":"Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New eigenvalue estimates involving Bessel functions\",\"authors\":\"F. Chami, N. Ginoux, Georges Habib\",\"doi\":\"10.5565/PUBLMAT6522109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6522109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
给定一个边界为∂M的紧黎曼流形(mn, g),我们给出了商∂M f dµg M f dµg的估计,其中f是定义在M上的一个光滑正函数,它满足一些涉及标量拉普拉斯算子的不等式。利用[37]中建立的均值引理,我们给出了f的微分不等式,在某些曲率假设下,可以用贝塞尔函数来解释。作为我们的主要结果的一个应用,给出了Dirichlet和Robin Laplacian的Faber-Krahn不等式的一个直接证明。此外,对于除标量曲率外还包含贝塞尔函数正根的狄拉克算子的特征值,给出了一个新的估计。独立地,我们将函数上的罗宾拉普拉斯扩展到微分形式。证明了该自然推广定义了一个谱离散且由正实特征值组成的自伴随椭圆算子。特别地,我们描述了它的第一个特征值,并给出了它在贝塞尔函数中的下界。
New eigenvalue estimates involving Bessel functions
Given a compact Riemannian manifold (M n , g) with boundary ∂M , we give an estimate for the quotient ∂M f dµ g M f dµ g , where f is a smooth positive function defined on M that satisfies some inequality involving the scalar Laplacian. By the mean value lemma established in [37], we provide a differential inequality for f which, under some curvature assumptions, can be interpreted in terms of Bessel functions. As an application of our main result, a direct proof is given of the Faber-Krahn inequalities for Dirichlet and Robin Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator that involves a positive root of Bessel function besides the scalar curvature. Independently, we extend the Robin Laplacian on functions to differential forms. We prove that this natural extension defines a self-adjoint and elliptic operator whose spectrum is discrete and consists of positive real eigenvalues. In particular, we characterize its first eigenvalue and provide a lower bound of it in terms of Bessel functions.