H. B. Brunetti, Ricardo Ferraz de Oliveira, J. Pezzopane, B. Pedreira, R. F. Carvalho, C. Pedreira, P. M. Santos
{"title":"在较长的再生周期中,茎和假茎生长对豚草生物量积累起关键作用","authors":"H. B. Brunetti, Ricardo Ferraz de Oliveira, J. Pezzopane, B. Pedreira, R. F. Carvalho, C. Pedreira, P. M. Santos","doi":"10.1071/CP22122","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Tall bunch-type tropical forage grasses are known for their rapid (true) stem elongation late in the regrowth cycle, even during the vegetative phase. Aims. This study aimed to evaluate the stem and pseudostem growth pattern of ‘Mombaça’ guineagrass [Megathyrsus maximus (Jacq.) BK Simon & SWL Jacobs] grown in field conditions and how this relates to its high biomass accumulation during long regrowth cycles. Methods. A guineagrass field was managed from December 2017 to January 2019, in three regrowth cycles of 10, 14 and 12 weeks duration. Individual tillers were assessed weekly to measure stem, pseudostem and leaf elongation, leaf appearance; and angle of insertion of the leaves. Aboveground biomass samples were taken weekly for biomass accumulation and leaf area index assessment. Key results. At the beginning of each regrowth cycle, the pseudostem elongated while the stem length remained constant. Subsequently, the pseudostem length reached a plateau, while the stem length increased at a constant rate. Because of a positive relationship between pseudostem and leaf laminae lengths, the long pseudostem ensured the formation of long leaves in tall tillers and positive net leaf elongation in long regrowth cycles. Conclusions. The high biomass accumulation reflected the continuous positive net leaf elongation by the tillers and was underpinned by the younger leaves being more erect than the older ones, allowing for lower self-shading of the older leaves and greater leaf tissue retention. Implications. The high production of tropical forage grasses in late regrowth should be utilised with caution, as it is underpinned by stem elongation and meristem elevation.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem and pseudostem growth play a key role in biomass accumulation of guineagrass in long regrowth cycles\",\"authors\":\"H. B. Brunetti, Ricardo Ferraz de Oliveira, J. Pezzopane, B. Pedreira, R. F. Carvalho, C. Pedreira, P. M. Santos\",\"doi\":\"10.1071/CP22122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Context. Tall bunch-type tropical forage grasses are known for their rapid (true) stem elongation late in the regrowth cycle, even during the vegetative phase. Aims. This study aimed to evaluate the stem and pseudostem growth pattern of ‘Mombaça’ guineagrass [Megathyrsus maximus (Jacq.) BK Simon & SWL Jacobs] grown in field conditions and how this relates to its high biomass accumulation during long regrowth cycles. Methods. A guineagrass field was managed from December 2017 to January 2019, in three regrowth cycles of 10, 14 and 12 weeks duration. Individual tillers were assessed weekly to measure stem, pseudostem and leaf elongation, leaf appearance; and angle of insertion of the leaves. Aboveground biomass samples were taken weekly for biomass accumulation and leaf area index assessment. Key results. At the beginning of each regrowth cycle, the pseudostem elongated while the stem length remained constant. Subsequently, the pseudostem length reached a plateau, while the stem length increased at a constant rate. Because of a positive relationship between pseudostem and leaf laminae lengths, the long pseudostem ensured the formation of long leaves in tall tillers and positive net leaf elongation in long regrowth cycles. Conclusions. The high biomass accumulation reflected the continuous positive net leaf elongation by the tillers and was underpinned by the younger leaves being more erect than the older ones, allowing for lower self-shading of the older leaves and greater leaf tissue retention. Implications. The high production of tropical forage grasses in late regrowth should be utilised with caution, as it is underpinned by stem elongation and meristem elevation.\",\"PeriodicalId\":51237,\"journal\":{\"name\":\"Crop & Pasture Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop & Pasture Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/CP22122\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22122","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stem and pseudostem growth play a key role in biomass accumulation of guineagrass in long regrowth cycles
ABSTRACT Context. Tall bunch-type tropical forage grasses are known for their rapid (true) stem elongation late in the regrowth cycle, even during the vegetative phase. Aims. This study aimed to evaluate the stem and pseudostem growth pattern of ‘Mombaça’ guineagrass [Megathyrsus maximus (Jacq.) BK Simon & SWL Jacobs] grown in field conditions and how this relates to its high biomass accumulation during long regrowth cycles. Methods. A guineagrass field was managed from December 2017 to January 2019, in three regrowth cycles of 10, 14 and 12 weeks duration. Individual tillers were assessed weekly to measure stem, pseudostem and leaf elongation, leaf appearance; and angle of insertion of the leaves. Aboveground biomass samples were taken weekly for biomass accumulation and leaf area index assessment. Key results. At the beginning of each regrowth cycle, the pseudostem elongated while the stem length remained constant. Subsequently, the pseudostem length reached a plateau, while the stem length increased at a constant rate. Because of a positive relationship between pseudostem and leaf laminae lengths, the long pseudostem ensured the formation of long leaves in tall tillers and positive net leaf elongation in long regrowth cycles. Conclusions. The high biomass accumulation reflected the continuous positive net leaf elongation by the tillers and was underpinned by the younger leaves being more erect than the older ones, allowing for lower self-shading of the older leaves and greater leaf tissue retention. Implications. The high production of tropical forage grasses in late regrowth should be utilised with caution, as it is underpinned by stem elongation and meristem elevation.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.