从专利和科学出版物中提取生物医学信息的方法(以化合物为例)

Nikolay A. Kolpakov, A. Molodchenkov, Anton V. Lukin
{"title":"从专利和科学出版物中提取生物医学信息的方法(以化合物为例)","authors":"Nikolay A. Kolpakov, A. Molodchenkov, Anton V. Lukin","doi":"10.22363/2658-4670-2023-31-1-64-74","DOIUrl":null,"url":null,"abstract":"This article proposes an algorithm for solving the problem of extracting information from biomedical patents and scientific publications. The introduced algorithm is based on machine learning methods. Experiments were carried out on patents from the USPTO database. Experiments have shown that the best extraction quality was achieved by a model based on BioBERT.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of extracting biomedical information from patents and scientific publications (on the example of chemical compounds)\",\"authors\":\"Nikolay A. Kolpakov, A. Molodchenkov, Anton V. Lukin\",\"doi\":\"10.22363/2658-4670-2023-31-1-64-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an algorithm for solving the problem of extracting information from biomedical patents and scientific publications. The introduced algorithm is based on machine learning methods. Experiments were carried out on patents from the USPTO database. Experiments have shown that the best extraction quality was achieved by a model based on BioBERT.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2023-31-1-64-74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2023-31-1-64-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从生物医学专利和科学出版物中提取信息的算法。所介绍的算法是基于机器学习方法的。实验是在USPTO数据库中的专利上进行的。实验结果表明,基于BioBERT模型的提取效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods of extracting biomedical information from patents and scientific publications (on the example of chemical compounds)
This article proposes an algorithm for solving the problem of extracting information from biomedical patents and scientific publications. The introduced algorithm is based on machine learning methods. Experiments were carried out on patents from the USPTO database. Experiments have shown that the best extraction quality was achieved by a model based on BioBERT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
期刊最新文献
Asymptote-based scientific animation Brain-computer interaction modeling based on the stable diffusion model Hodge-de Rham Laplacian and geometric criteria for gravitational waves On a stable calculation of the normal to a surface given approximately Numerical integration of the Cauchy problem with non-singular special points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1