Guangchao Wang, Sheng Zhou, Shan Zhang, Z. Niu, Xuemin Shen
{"title":"基于SFC的可重构空-地综合网络服务配置","authors":"Guangchao Wang, Sheng Zhou, Shan Zhang, Z. Niu, Xuemin Shen","doi":"10.1109/JSAC.2020.2986851","DOIUrl":null,"url":null,"abstract":"Space-air-ground integrated networks (SAGIN) extend the capability of wireless networks and will be the essential building block for many advanced applications, like autonomous driving, earth monitoring, and etc. However, coordinating heterogeneous physical resources is very challenging in such a large-scale dynamic network. In this paper, we propose a reconfigurable service provisioning framework based on service function chaining (SFC) for SAGIN. In SFC, the network functions are virtualized and the service data needs to flow through specific network functions in a predefined sequence. The inherent issue is how to plan the service function chains over large-scale heterogeneous networks, subject to the resource limitations of both communication and computation. Specifically, we must jointly consider the virtual network functions (VNFs) embedding and service data routing. We formulate the SFC planning problem as an integer non-linear programming problem, which is NP-hard. Then, a heuristic greedy algorithm is proposed, which concentrates on leveraging different features of aerial and ground nodes and balancing the resource consumptions. Furthermore, a new metric, aggregation ratio (AR) is proposed to elaborate the communication-computation tradeoff. Extensive simulations shows that our proposed algorithm achieves near-optimal performance. We also find that the SAGIN significantly reduces the service blockage probability and improves the efficiency of resource utilization. Finally, a case study on multiple intersection traffic scheduling is provided to demonstrate the effectiveness of our proposed SFC-based service provisioning framework.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1478-1489"},"PeriodicalIF":13.8000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986851","citationCount":"70","resultStr":"{\"title\":\"SFC-Based Service Provisioning for Reconfigurable Space-Air-Ground Integrated Networks\",\"authors\":\"Guangchao Wang, Sheng Zhou, Shan Zhang, Z. Niu, Xuemin Shen\",\"doi\":\"10.1109/JSAC.2020.2986851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space-air-ground integrated networks (SAGIN) extend the capability of wireless networks and will be the essential building block for many advanced applications, like autonomous driving, earth monitoring, and etc. However, coordinating heterogeneous physical resources is very challenging in such a large-scale dynamic network. In this paper, we propose a reconfigurable service provisioning framework based on service function chaining (SFC) for SAGIN. In SFC, the network functions are virtualized and the service data needs to flow through specific network functions in a predefined sequence. The inherent issue is how to plan the service function chains over large-scale heterogeneous networks, subject to the resource limitations of both communication and computation. Specifically, we must jointly consider the virtual network functions (VNFs) embedding and service data routing. We formulate the SFC planning problem as an integer non-linear programming problem, which is NP-hard. Then, a heuristic greedy algorithm is proposed, which concentrates on leveraging different features of aerial and ground nodes and balancing the resource consumptions. Furthermore, a new metric, aggregation ratio (AR) is proposed to elaborate the communication-computation tradeoff. Extensive simulations shows that our proposed algorithm achieves near-optimal performance. We also find that the SAGIN significantly reduces the service blockage probability and improves the efficiency of resource utilization. Finally, a case study on multiple intersection traffic scheduling is provided to demonstrate the effectiveness of our proposed SFC-based service provisioning framework.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1478-1489\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986851\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986851\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986851","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SFC-Based Service Provisioning for Reconfigurable Space-Air-Ground Integrated Networks
Space-air-ground integrated networks (SAGIN) extend the capability of wireless networks and will be the essential building block for many advanced applications, like autonomous driving, earth monitoring, and etc. However, coordinating heterogeneous physical resources is very challenging in such a large-scale dynamic network. In this paper, we propose a reconfigurable service provisioning framework based on service function chaining (SFC) for SAGIN. In SFC, the network functions are virtualized and the service data needs to flow through specific network functions in a predefined sequence. The inherent issue is how to plan the service function chains over large-scale heterogeneous networks, subject to the resource limitations of both communication and computation. Specifically, we must jointly consider the virtual network functions (VNFs) embedding and service data routing. We formulate the SFC planning problem as an integer non-linear programming problem, which is NP-hard. Then, a heuristic greedy algorithm is proposed, which concentrates on leveraging different features of aerial and ground nodes and balancing the resource consumptions. Furthermore, a new metric, aggregation ratio (AR) is proposed to elaborate the communication-computation tradeoff. Extensive simulations shows that our proposed algorithm achieves near-optimal performance. We also find that the SAGIN significantly reduces the service blockage probability and improves the efficiency of resource utilization. Finally, a case study on multiple intersection traffic scheduling is provided to demonstrate the effectiveness of our proposed SFC-based service provisioning framework.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.