两步鲁棒非参数边界估计

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2023-07-03 DOI:10.1080/07474938.2023.2219183
Yining Chen, H. Torrent, F. Ziegelmann
{"title":"两步鲁棒非参数边界估计","authors":"Yining Chen, H. Torrent, F. Ziegelmann","doi":"10.1080/07474938.2023.2219183","DOIUrl":null,"url":null,"abstract":"Abstract We propose a robust methodology for estimating production frontiers with multi-dimensional input via a two-step nonparametric regression, in which we estimate the level and shape of the frontier before shifting it to an appropriate position. Our main contribution is to derive a novel frontier estimation method under a variety of flexible models which is robust to the presence of outliers and possesses some inherent advantages over traditional frontier estimators. Our approach may be viewed as a simplification, yet a generalization, of those proposed by Martins-Filho and coauthors, who estimate frontier surfaces in three steps. In particular, outliers, as well as commonly seen shape constraints of the frontier surfaces, such as concavity and monotonicity, can be straightforwardly handled by our estimation procedure. We show consistency and asymptotic distributional theory of our resulting estimators under standard assumptions in the multi-dimensional input setting. The competitive finite-sample performances of our estimators are highlighted in both simulation studies and empirical data analysis.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"612 - 634"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust nonparametric frontier estimation in two steps\",\"authors\":\"Yining Chen, H. Torrent, F. Ziegelmann\",\"doi\":\"10.1080/07474938.2023.2219183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a robust methodology for estimating production frontiers with multi-dimensional input via a two-step nonparametric regression, in which we estimate the level and shape of the frontier before shifting it to an appropriate position. Our main contribution is to derive a novel frontier estimation method under a variety of flexible models which is robust to the presence of outliers and possesses some inherent advantages over traditional frontier estimators. Our approach may be viewed as a simplification, yet a generalization, of those proposed by Martins-Filho and coauthors, who estimate frontier surfaces in three steps. In particular, outliers, as well as commonly seen shape constraints of the frontier surfaces, such as concavity and monotonicity, can be straightforwardly handled by our estimation procedure. We show consistency and asymptotic distributional theory of our resulting estimators under standard assumptions in the multi-dimensional input setting. The competitive finite-sample performances of our estimators are highlighted in both simulation studies and empirical data analysis.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"612 - 634\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2219183\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2219183","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文提出了一种鲁棒的方法,通过两步非参数回归来估计具有多维输入的生产边界,在将其移动到适当位置之前,我们估计了边界的水平和形状。我们的主要贡献是在各种灵活模型下推导出一种新的边界估计方法,该方法对异常值的存在具有鲁棒性,并且比传统的边界估计方法具有一些固有的优点。我们的方法可以看作是对Martins-Filho及其合作者提出的方法的一种简化,但也是一种一般化的方法,后者分三步估计边界表面。特别地,我们的估计程序可以直接处理异常值,以及常见的边界表面的形状约束,如凹凸性和单调性。在多维输入设置的标准假设下,我们证明了我们得到的估计量的一致性和渐近分布理论。在模拟研究和实证数据分析中,我们的估计器具有有限样本的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust nonparametric frontier estimation in two steps
Abstract We propose a robust methodology for estimating production frontiers with multi-dimensional input via a two-step nonparametric regression, in which we estimate the level and shape of the frontier before shifting it to an appropriate position. Our main contribution is to derive a novel frontier estimation method under a variety of flexible models which is robust to the presence of outliers and possesses some inherent advantages over traditional frontier estimators. Our approach may be viewed as a simplification, yet a generalization, of those proposed by Martins-Filho and coauthors, who estimate frontier surfaces in three steps. In particular, outliers, as well as commonly seen shape constraints of the frontier surfaces, such as concavity and monotonicity, can be straightforwardly handled by our estimation procedure. We show consistency and asymptotic distributional theory of our resulting estimators under standard assumptions in the multi-dimensional input setting. The competitive finite-sample performances of our estimators are highlighted in both simulation studies and empirical data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1