Z. Xionghu, S. Egwu, D. Jingen, M. Liujie, J. Xiangru
{"title":"沥青纳米颗粒的合成及其对钻井液性能和页岩分散性的影响","authors":"Z. Xionghu, S. Egwu, D. Jingen, M. Liujie, J. Xiangru","doi":"10.2118/208589-pa","DOIUrl":null,"url":null,"abstract":"\n Asphalt nanoparticles (ANs) were developed by synthesizing asphalt powders with chloroacetic acid (ClCH2COOH). The objective of this synthesis was to develop engineered ANs with a cationic point capable of adsorbing on the net negatively charged clay platelets, thereby improving drilling fluid functionality and pore-plugging performance, reducing shale dispersion, and ultimately enhancing shale stability. Tests carried out to study the performance of the synthesized ANs include particle size analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy, drilling fluid rheology, and filtration rate and shale dispersion tests. FT-IR spectrum results confirming the occurrence of a chemical reaction between asphalt and ClCH2COOH showed a shift in NH vibration from 3,439.95 cm−1 (before synthesis) to 3,435.05 cm−1 (after synthesis). Based on particle size analysis, an average particle size diameter of 92.9 nm was observed, suggesting the tendency of ANs to invade and seal nanopore spaces. The shape of ANs ranged from spherical to irregular, because intercalated structures were observed from the scanning electron microscopic analysis on the interaction between ANs and sodium bentonite (Na-Bent). An increase in attracting force between the Na-Bent particles caused by the adsorption of ANs cationic point on bentonite clay particles led to an increase in drilling fluid rheological properties as the ANs %w/v increased. The drilling fluid filtration rate was, however, not significantly affected by the %w/v increase in ANs because results indicated slight decrease in fluid loss when compared with the base mud (BM). According to the shale dispersion test, the shale cuttings percentage recovery of the 2%w/v ANs sample was 76.5%, owing to the decrease in fluid-rock interaction caused by ionic adsorption and encapsulation of shale surfaces by the ANs. Experimental results from this investigation indicate that the likely mechanisms of the effect of ANs on shale formations would be sealing off nanopore spaces in formations because of its ultratiny particle size; adsorption of the net negatively charged shale cuttings by the ANs cationic point, thereby reducing drilling cuttings dispersion; and improving hole-cleaning performance due to its effect on the drilling fluid rheological properties.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Asphalt Nanoparticles and Their Effects on Drilling Fluid Properties and Shale Dispersion\",\"authors\":\"Z. Xionghu, S. Egwu, D. Jingen, M. Liujie, J. Xiangru\",\"doi\":\"10.2118/208589-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Asphalt nanoparticles (ANs) were developed by synthesizing asphalt powders with chloroacetic acid (ClCH2COOH). The objective of this synthesis was to develop engineered ANs with a cationic point capable of adsorbing on the net negatively charged clay platelets, thereby improving drilling fluid functionality and pore-plugging performance, reducing shale dispersion, and ultimately enhancing shale stability. Tests carried out to study the performance of the synthesized ANs include particle size analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy, drilling fluid rheology, and filtration rate and shale dispersion tests. FT-IR spectrum results confirming the occurrence of a chemical reaction between asphalt and ClCH2COOH showed a shift in NH vibration from 3,439.95 cm−1 (before synthesis) to 3,435.05 cm−1 (after synthesis). Based on particle size analysis, an average particle size diameter of 92.9 nm was observed, suggesting the tendency of ANs to invade and seal nanopore spaces. The shape of ANs ranged from spherical to irregular, because intercalated structures were observed from the scanning electron microscopic analysis on the interaction between ANs and sodium bentonite (Na-Bent). An increase in attracting force between the Na-Bent particles caused by the adsorption of ANs cationic point on bentonite clay particles led to an increase in drilling fluid rheological properties as the ANs %w/v increased. The drilling fluid filtration rate was, however, not significantly affected by the %w/v increase in ANs because results indicated slight decrease in fluid loss when compared with the base mud (BM). According to the shale dispersion test, the shale cuttings percentage recovery of the 2%w/v ANs sample was 76.5%, owing to the decrease in fluid-rock interaction caused by ionic adsorption and encapsulation of shale surfaces by the ANs. Experimental results from this investigation indicate that the likely mechanisms of the effect of ANs on shale formations would be sealing off nanopore spaces in formations because of its ultratiny particle size; adsorption of the net negatively charged shale cuttings by the ANs cationic point, thereby reducing drilling cuttings dispersion; and improving hole-cleaning performance due to its effect on the drilling fluid rheological properties.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/208589-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/208589-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Synthesis of Asphalt Nanoparticles and Their Effects on Drilling Fluid Properties and Shale Dispersion
Asphalt nanoparticles (ANs) were developed by synthesizing asphalt powders with chloroacetic acid (ClCH2COOH). The objective of this synthesis was to develop engineered ANs with a cationic point capable of adsorbing on the net negatively charged clay platelets, thereby improving drilling fluid functionality and pore-plugging performance, reducing shale dispersion, and ultimately enhancing shale stability. Tests carried out to study the performance of the synthesized ANs include particle size analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy, drilling fluid rheology, and filtration rate and shale dispersion tests. FT-IR spectrum results confirming the occurrence of a chemical reaction between asphalt and ClCH2COOH showed a shift in NH vibration from 3,439.95 cm−1 (before synthesis) to 3,435.05 cm−1 (after synthesis). Based on particle size analysis, an average particle size diameter of 92.9 nm was observed, suggesting the tendency of ANs to invade and seal nanopore spaces. The shape of ANs ranged from spherical to irregular, because intercalated structures were observed from the scanning electron microscopic analysis on the interaction between ANs and sodium bentonite (Na-Bent). An increase in attracting force between the Na-Bent particles caused by the adsorption of ANs cationic point on bentonite clay particles led to an increase in drilling fluid rheological properties as the ANs %w/v increased. The drilling fluid filtration rate was, however, not significantly affected by the %w/v increase in ANs because results indicated slight decrease in fluid loss when compared with the base mud (BM). According to the shale dispersion test, the shale cuttings percentage recovery of the 2%w/v ANs sample was 76.5%, owing to the decrease in fluid-rock interaction caused by ionic adsorption and encapsulation of shale surfaces by the ANs. Experimental results from this investigation indicate that the likely mechanisms of the effect of ANs on shale formations would be sealing off nanopore spaces in formations because of its ultratiny particle size; adsorption of the net negatively charged shale cuttings by the ANs cationic point, thereby reducing drilling cuttings dispersion; and improving hole-cleaning performance due to its effect on the drilling fluid rheological properties.
期刊介绍:
Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.