机器人辅助膝关节置换术的学习曲线;优化学习曲线以提高效率

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical Engineering Letters Pub Date : 2023-08-21 eCollection Date: 2023-11-01 DOI:10.1007/s13534-023-00311-w
Sang Jun Song, Cheol Hee Park
{"title":"机器人辅助膝关节置换术的学习曲线;优化学习曲线以提高效率","authors":"Sang Jun Song, Cheol Hee Park","doi":"10.1007/s13534-023-00311-w","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of robot-assisted (RA) systems in knee arthroplasty has challenged surgeons to adopt the new technology in their customized surgical techniques, learn system controls, and adjust to automated processes. Despite the potential advantages of RA knee arthroplasty, some surgeons remain hesitant to adopt this novel technology owing to concerns regarding the cumbersome adaptation process. This narrative review addresses the learning-curve issues in RA knee arthroplasty based on the existing literature. Learning curves exist in terms of the operative time and stress level of the surgical team but not in the final implant positions. The factors that reduce the learning curve are previous experience with computer-assisted surgery (including robot or navigation systems), specialization in knee surgery, high volume of knee arthroplasty, optimization of the RA workflow, sequential implementation of RA surgery, and consistency of the surgical team. Worse clinical outcomes may occur in the early postoperative period, but not in the later period, in RA knee arthroplasty performed during the learning phase. No significant differences were observed in implant survival or complication rates between the RA knee arthroplasties performed during the learning and proficiency phases.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning curve for robot-assisted knee arthroplasty; optimizing the learning curve to improve efficiency.\",\"authors\":\"Sang Jun Song, Cheol Hee Park\",\"doi\":\"10.1007/s13534-023-00311-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The introduction of robot-assisted (RA) systems in knee arthroplasty has challenged surgeons to adopt the new technology in their customized surgical techniques, learn system controls, and adjust to automated processes. Despite the potential advantages of RA knee arthroplasty, some surgeons remain hesitant to adopt this novel technology owing to concerns regarding the cumbersome adaptation process. This narrative review addresses the learning-curve issues in RA knee arthroplasty based on the existing literature. Learning curves exist in terms of the operative time and stress level of the surgical team but not in the final implant positions. The factors that reduce the learning curve are previous experience with computer-assisted surgery (including robot or navigation systems), specialization in knee surgery, high volume of knee arthroplasty, optimization of the RA workflow, sequential implementation of RA surgery, and consistency of the surgical team. Worse clinical outcomes may occur in the early postoperative period, but not in the later period, in RA knee arthroplasty performed during the learning phase. No significant differences were observed in implant survival or complication rates between the RA knee arthroplasties performed during the learning and proficiency phases.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-023-00311-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-023-00311-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器人辅助(RA)系统在膝关节置换术中的引入向外科医生提出了挑战,要求他们在定制手术技术中采用新技术,学习系统控制,并适应自动化过程。尽管RA膝关节置换术具有潜在的优势,但由于担心适应过程繁琐,一些外科医生仍对采用这项新技术犹豫不决。这篇叙述性综述在现有文献的基础上解决了RA膝关节置换术中的学习曲线问题。学习曲线存在于手术时间和手术团队的压力水平方面,但不存在于最终植入位置。降低学习曲线的因素包括以前的计算机辅助手术经验(包括机器人或导航系统)、膝关节手术专业化、大量膝关节置换术、RA工作流程的优化、RA手术的顺序实施以及手术团队的一致性。在学习阶段进行的RA膝关节置换术中,术后早期可能会出现更糟糕的临床结果,但后期不会。在学习阶段和熟练阶段进行的RA膝关节置换术在植入物存活率或并发症发生率方面没有观察到显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning curve for robot-assisted knee arthroplasty; optimizing the learning curve to improve efficiency.

The introduction of robot-assisted (RA) systems in knee arthroplasty has challenged surgeons to adopt the new technology in their customized surgical techniques, learn system controls, and adjust to automated processes. Despite the potential advantages of RA knee arthroplasty, some surgeons remain hesitant to adopt this novel technology owing to concerns regarding the cumbersome adaptation process. This narrative review addresses the learning-curve issues in RA knee arthroplasty based on the existing literature. Learning curves exist in terms of the operative time and stress level of the surgical team but not in the final implant positions. The factors that reduce the learning curve are previous experience with computer-assisted surgery (including robot or navigation systems), specialization in knee surgery, high volume of knee arthroplasty, optimization of the RA workflow, sequential implementation of RA surgery, and consistency of the surgical team. Worse clinical outcomes may occur in the early postoperative period, but not in the later period, in RA knee arthroplasty performed during the learning phase. No significant differences were observed in implant survival or complication rates between the RA knee arthroplasties performed during the learning and proficiency phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
期刊最新文献
CT synthesis with deep learning for MR-only radiotherapy planning: a review. A comprehensive review on Compton camera image reconstruction: from principles to AI innovations. A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies. Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review. Self-supervised learning for CT image denoising and reconstruction: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1