{"title":"AISI D2工具钢在不同环境下磨削的对比分析","authors":"Ashwani Sharma, M. Z. Khan Yusufzai, M. Vashista","doi":"10.1080/10910344.2022.2044853","DOIUrl":null,"url":null,"abstract":"Abstract Difficult-to-cut material, i.e., AISI D2 tool steel, has been widely adopted in metalworking industries to manufacture dies for piercing, blanking, drawing and thread rolling due to its excellent wear resistance and non-deforming properties. This article attempts an experimental study to determine the effect of cryogenic coolant (liquid nitrogen) on the grindability of AISI D2 tool steel as work material and its results are compared with the conventional dry and wet grinding methods. The effects of the cryogenic coolant on force components (i.e., tangential force, Ft and normal force, Fn ), specific grinding energy (u), force ratio, surface roughness parameters (Ra and Rz ) and microstructure were observed. The comparison results indicate a significant reduction in grindability indices such as 64% and 44% in Ft , 54% and 34% in Fn , 46% and 30% in Ra and 40% and 34% in Rz , respectively under cryogenic grinding at higher downfeed as followed to dry and wet grinding. The grinding performance in Ft , Fn , u and Ra was also improved with an increased delivery pressure of the liquid nitrogen (LN2). From the results, it is concluded that cryogenic coolant offers an influential method to improve grinding performance and surface integrity of AISI D2 tool steel.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A comparative analysis of grinding of AISI D2 tool steel under different environments\",\"authors\":\"Ashwani Sharma, M. Z. Khan Yusufzai, M. Vashista\",\"doi\":\"10.1080/10910344.2022.2044853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Difficult-to-cut material, i.e., AISI D2 tool steel, has been widely adopted in metalworking industries to manufacture dies for piercing, blanking, drawing and thread rolling due to its excellent wear resistance and non-deforming properties. This article attempts an experimental study to determine the effect of cryogenic coolant (liquid nitrogen) on the grindability of AISI D2 tool steel as work material and its results are compared with the conventional dry and wet grinding methods. The effects of the cryogenic coolant on force components (i.e., tangential force, Ft and normal force, Fn ), specific grinding energy (u), force ratio, surface roughness parameters (Ra and Rz ) and microstructure were observed. The comparison results indicate a significant reduction in grindability indices such as 64% and 44% in Ft , 54% and 34% in Fn , 46% and 30% in Ra and 40% and 34% in Rz , respectively under cryogenic grinding at higher downfeed as followed to dry and wet grinding. The grinding performance in Ft , Fn , u and Ra was also improved with an increased delivery pressure of the liquid nitrogen (LN2). From the results, it is concluded that cryogenic coolant offers an influential method to improve grinding performance and surface integrity of AISI D2 tool steel.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2022.2044853\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2044853","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A comparative analysis of grinding of AISI D2 tool steel under different environments
Abstract Difficult-to-cut material, i.e., AISI D2 tool steel, has been widely adopted in metalworking industries to manufacture dies for piercing, blanking, drawing and thread rolling due to its excellent wear resistance and non-deforming properties. This article attempts an experimental study to determine the effect of cryogenic coolant (liquid nitrogen) on the grindability of AISI D2 tool steel as work material and its results are compared with the conventional dry and wet grinding methods. The effects of the cryogenic coolant on force components (i.e., tangential force, Ft and normal force, Fn ), specific grinding energy (u), force ratio, surface roughness parameters (Ra and Rz ) and microstructure were observed. The comparison results indicate a significant reduction in grindability indices such as 64% and 44% in Ft , 54% and 34% in Fn , 46% and 30% in Ra and 40% and 34% in Rz , respectively under cryogenic grinding at higher downfeed as followed to dry and wet grinding. The grinding performance in Ft , Fn , u and Ra was also improved with an increased delivery pressure of the liquid nitrogen (LN2). From the results, it is concluded that cryogenic coolant offers an influential method to improve grinding performance and surface integrity of AISI D2 tool steel.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining