催产素、催乳素和雌激素在男性性功能中的作用

Azab Elsayed Azab
{"title":"催产素、催乳素和雌激素在男性性功能中的作用","authors":"Azab Elsayed Azab","doi":"10.31579/2690-1919/228","DOIUrl":null,"url":null,"abstract":"Background: The dysfunction in sexual ability has effects on the quality of life in men. Oxytocin plays a role in sexual and social behaviors. Hyperprolactemic males had erectile dysfunction. Endogenous estrogens in men, are not only important for health integrity but can additionally cause the promotion of many diseases. Objectives: The current review aimed to high light on the role of oxytocin, prolactin, and estrogen in male sexual functions. Oxytocin neurons have been heavily implicated in mediating sexual behavior in both humans and animals. Oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. Oxytocin levels rise during mating in females and males in humans and animals and may mediate anxiolytic/calming effects of sexual activity and antidepressant effects.Oxytocin’s role in regulating erection and ejaculation has been studied in mice and rats. Oxytocinergic projections from the paraventricular nucleus to the hippocampus, medulla oblongata, and spinal cord facilitate penile erection. Prolactin (PRL) serves a dual function both as a circulatory hormone and as a cytokine. PRL is known to be involved in the control of male copulatory behavior in humans, mice, rats, and other rodent models. It release during copulation in males and has a positive modulation for various aspects of testicular functions which hinting at the crucial role of prolactin in male reproduction. The lower concentration of prolactin was associated with reduced seminal vesicle volume and ejaculate in the infertile human male. Hypoprolactinemia has been associated with premature ejaculation and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. It is also reported that it can cause endocrine disturbances leading to abnormal levels of testosterone, FSH, and LH. Chronic hyperprolactinaemia suppresses copulatory behaviour in animal models and yields sexual dysfunction and other side effects in men. In men, testosterone acting via its action on androgen receptors may be dependent on the action of aromatase enzyme on of testosterone and converting it to estradiol (E2). Estrogens act through ERα and ERβ at the plasma membrane and in the nucleus to regulate functions of many organs in men. The role of estradiol action on libido is seen at various levels of regulation, starting with direct effects in the brain. Not only does estradiol modulate sexual behavior in the adult male, it also appears to organize the early brain to program sexual behavior. The exact role of estradiol in each area of male sexual function including libido, spermatogenesis, and erectile function is difficult to determine. A complex balance of testosterone, estradiol, aromatase, and estrogen receptors in brain, testes, and penis, confirmed the indispensable and highly regulated hormonal interaction of estrogen in the male. Conclusion: It can be concluded that oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. PRL is involved in the control of male copulatory behavior in humans, rats, mice, and other rodent models. Hypoprolactinemia has been associated with reduced seminal vesicle volume, premature ejaculation, and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. Also, hyperprolactemic males had erectile dysfunction. Estradiol modulates sexual behavior in the adult male, and appears to organize the early brain to program sexual behavior.","PeriodicalId":93114,"journal":{"name":"Journal of clinical research and reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Oxytocin, Prolactin, and Estrogen in Male Sexual Functions\",\"authors\":\"Azab Elsayed Azab\",\"doi\":\"10.31579/2690-1919/228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The dysfunction in sexual ability has effects on the quality of life in men. Oxytocin plays a role in sexual and social behaviors. Hyperprolactemic males had erectile dysfunction. Endogenous estrogens in men, are not only important for health integrity but can additionally cause the promotion of many diseases. Objectives: The current review aimed to high light on the role of oxytocin, prolactin, and estrogen in male sexual functions. Oxytocin neurons have been heavily implicated in mediating sexual behavior in both humans and animals. Oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. Oxytocin levels rise during mating in females and males in humans and animals and may mediate anxiolytic/calming effects of sexual activity and antidepressant effects.Oxytocin’s role in regulating erection and ejaculation has been studied in mice and rats. Oxytocinergic projections from the paraventricular nucleus to the hippocampus, medulla oblongata, and spinal cord facilitate penile erection. Prolactin (PRL) serves a dual function both as a circulatory hormone and as a cytokine. PRL is known to be involved in the control of male copulatory behavior in humans, mice, rats, and other rodent models. It release during copulation in males and has a positive modulation for various aspects of testicular functions which hinting at the crucial role of prolactin in male reproduction. The lower concentration of prolactin was associated with reduced seminal vesicle volume and ejaculate in the infertile human male. Hypoprolactinemia has been associated with premature ejaculation and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. It is also reported that it can cause endocrine disturbances leading to abnormal levels of testosterone, FSH, and LH. Chronic hyperprolactinaemia suppresses copulatory behaviour in animal models and yields sexual dysfunction and other side effects in men. In men, testosterone acting via its action on androgen receptors may be dependent on the action of aromatase enzyme on of testosterone and converting it to estradiol (E2). Estrogens act through ERα and ERβ at the plasma membrane and in the nucleus to regulate functions of many organs in men. The role of estradiol action on libido is seen at various levels of regulation, starting with direct effects in the brain. Not only does estradiol modulate sexual behavior in the adult male, it also appears to organize the early brain to program sexual behavior. The exact role of estradiol in each area of male sexual function including libido, spermatogenesis, and erectile function is difficult to determine. A complex balance of testosterone, estradiol, aromatase, and estrogen receptors in brain, testes, and penis, confirmed the indispensable and highly regulated hormonal interaction of estrogen in the male. Conclusion: It can be concluded that oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. PRL is involved in the control of male copulatory behavior in humans, rats, mice, and other rodent models. Hypoprolactinemia has been associated with reduced seminal vesicle volume, premature ejaculation, and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. Also, hyperprolactemic males had erectile dysfunction. Estradiol modulates sexual behavior in the adult male, and appears to organize the early brain to program sexual behavior.\",\"PeriodicalId\":93114,\"journal\":{\"name\":\"Journal of clinical research and reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical research and reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31579/2690-1919/228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical research and reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2690-1919/228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:男性性能力功能障碍会影响生活质量。催产素在性行为和社会行为中发挥作用。高泌乳症男性有勃起功能障碍。男性体内的内源性雌激素不仅对健康完整性很重要,而且还会引发许多疾病。目的:本综述旨在阐明催产素、泌乳素和雌激素在男性性功能中的作用。催产素神经元在人类和动物的性行为中起着重要的中介作用。催产素调节社会行为,如交配、母亲/父亲的照顾和联系。在人类和动物的雌性和雄性交配过程中,催产素水平升高,可能介导性活动的抗焦虑/镇静作用和抗抑郁作用。催产素在调节小鼠和大鼠勃起和射精中的作用已被研究。从室旁核到海马、延髓和脊髓的催产素能投射促进阴茎勃起。催乳素(PRL)具有循环激素和细胞因子的双重功能。已知PRL参与控制人类、小鼠、大鼠和其他啮齿动物模型中的雄性交配行为。它在雄性交配过程中释放,对睾丸功能的各个方面都有积极的调节作用,这暗示了催乳素在雄性生殖中的关键作用。泌乳素浓度较低与不育男性精囊体积和射精量减少有关。低泌乳素血症与早泄和勃起功能障碍有关。高泌乳素血症可能由肿瘤、药物或特发性引起,导致性行为改变,如性欲丧失和勃起功能障碍。据报道,它会引起内分泌紊乱,导致睾酮、FSH和LH水平异常。慢性高泌乳素血症抑制动物模型中的交配行为,并在男性中产生性功能障碍和其他副作用。在男性中,睾酮通过对雄激素受体的作用可能依赖于芳香化酶对睾酮的作用并将其转化为雌二醇(E2)。雌激素通过质膜和细胞核的ERα和ERβ调节男性许多器官的功能。雌二醇对性欲的作用可以从大脑的直接作用开始,在不同的调节水平上观察到。雌二醇不仅调节成年男性的性行为,而且似乎还组织早期大脑对性行为进行编程。雌二醇在男性性功能的各个领域(包括性欲、精子发生和勃起功能)的确切作用很难确定。大脑、睾丸和阴茎中睾酮、雌二醇、芳香化酶和雌激素受体的复杂平衡,证实了雌激素在男性中不可或缺且高度调节的激素相互作用。结论:可以得出结论,催产素调节社会行为,如交配、父母照顾和亲密关系。PRL参与控制人类、大鼠、小鼠和其他啮齿动物模型中的雄性交配行为。低泌乳素血症与精囊体积减少、早泄和勃起功能障碍有关。高泌乳素血症可能由肿瘤、药物或特发性引起,导致性行为改变,如性欲丧失和勃起功能障碍。此外,高泌乳素男性也有勃起功能障碍。雌二醇调节成年男性的性行为,并似乎组织早期大脑对性行为进行编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Oxytocin, Prolactin, and Estrogen in Male Sexual Functions
Background: The dysfunction in sexual ability has effects on the quality of life in men. Oxytocin plays a role in sexual and social behaviors. Hyperprolactemic males had erectile dysfunction. Endogenous estrogens in men, are not only important for health integrity but can additionally cause the promotion of many diseases. Objectives: The current review aimed to high light on the role of oxytocin, prolactin, and estrogen in male sexual functions. Oxytocin neurons have been heavily implicated in mediating sexual behavior in both humans and animals. Oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. Oxytocin levels rise during mating in females and males in humans and animals and may mediate anxiolytic/calming effects of sexual activity and antidepressant effects.Oxytocin’s role in regulating erection and ejaculation has been studied in mice and rats. Oxytocinergic projections from the paraventricular nucleus to the hippocampus, medulla oblongata, and spinal cord facilitate penile erection. Prolactin (PRL) serves a dual function both as a circulatory hormone and as a cytokine. PRL is known to be involved in the control of male copulatory behavior in humans, mice, rats, and other rodent models. It release during copulation in males and has a positive modulation for various aspects of testicular functions which hinting at the crucial role of prolactin in male reproduction. The lower concentration of prolactin was associated with reduced seminal vesicle volume and ejaculate in the infertile human male. Hypoprolactinemia has been associated with premature ejaculation and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. It is also reported that it can cause endocrine disturbances leading to abnormal levels of testosterone, FSH, and LH. Chronic hyperprolactinaemia suppresses copulatory behaviour in animal models and yields sexual dysfunction and other side effects in men. In men, testosterone acting via its action on androgen receptors may be dependent on the action of aromatase enzyme on of testosterone and converting it to estradiol (E2). Estrogens act through ERα and ERβ at the plasma membrane and in the nucleus to regulate functions of many organs in men. The role of estradiol action on libido is seen at various levels of regulation, starting with direct effects in the brain. Not only does estradiol modulate sexual behavior in the adult male, it also appears to organize the early brain to program sexual behavior. The exact role of estradiol in each area of male sexual function including libido, spermatogenesis, and erectile function is difficult to determine. A complex balance of testosterone, estradiol, aromatase, and estrogen receptors in brain, testes, and penis, confirmed the indispensable and highly regulated hormonal interaction of estrogen in the male. Conclusion: It can be concluded that oxytocin hormone regulates social behaviors such as mating, maternal/paternal care, and bonding. PRL is involved in the control of male copulatory behavior in humans, rats, mice, and other rodent models. Hypoprolactinemia has been associated with reduced seminal vesicle volume, premature ejaculation, and erectile dysfunction. Hyperprolactinemia can be caused by tumors, drugs, or idiopathic, leading to alterations in sexual behavior as loss of libido and erectile dysfunction. Also, hyperprolactemic males had erectile dysfunction. Estradiol modulates sexual behavior in the adult male, and appears to organize the early brain to program sexual behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ayurvedic Perspective of Yoga for Physical and Emotional Well-Being Hypoxia of the Brain and Mechanisms of its Development Cadmium Toxicity: Insight into Sources, Toxicokinetics, and Effect on Vital Organs and Embryos Paroxysmal Emotionality in a Group of Adolescents with Behavioral Disorders To Assess the Effect of Hospitalization on Adult Patients’ Mental Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1