煎饼化和负霍金温度

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS International Journal of Modern Physics D Pub Date : 2023-05-15 DOI:10.1142/s0218271823420178
T. McMaken
{"title":"煎饼化和负霍金温度","authors":"T. McMaken","doi":"10.1142/s0218271823420178","DOIUrl":null,"url":null,"abstract":"Vacuum models of charged or spinning black holes possess two horizons, the inner of which has the oft-overlooked property that gravitational tidal forces initially spaghettifying a freely falling observer will eventually change signs and flatten the observer like a pancake. Inner horizons also induce a classical blueshift instability known as mass inflation, and a number of recent studies have found that inner horizons exhibit even stronger quantum singular behavior. In this essay we explore the quantum effect of Hawking radiation, which in the presence of compressive tidal forces seems to predict negative temperatures. By analyzing the interaction of quantum fields with black hole geometries, we can come to a closer semiclassical understanding of what really happens near a black hole's inner horizon.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pancakification and negative Hawking temperatures\",\"authors\":\"T. McMaken\",\"doi\":\"10.1142/s0218271823420178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vacuum models of charged or spinning black holes possess two horizons, the inner of which has the oft-overlooked property that gravitational tidal forces initially spaghettifying a freely falling observer will eventually change signs and flatten the observer like a pancake. Inner horizons also induce a classical blueshift instability known as mass inflation, and a number of recent studies have found that inner horizons exhibit even stronger quantum singular behavior. In this essay we explore the quantum effect of Hawking radiation, which in the presence of compressive tidal forces seems to predict negative temperatures. By analyzing the interaction of quantum fields with black hole geometries, we can come to a closer semiclassical understanding of what really happens near a black hole's inner horizon.\",\"PeriodicalId\":50307,\"journal\":{\"name\":\"International Journal of Modern Physics D\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218271823420178\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218271823420178","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

带电或旋转黑洞的真空模型拥有两个视界,其内部有一个经常被忽视的特性,即引力潮汐力最初将一个自由下落的观察者变成意大利面,但最终会改变标志,使观察者像煎饼一样变平。内视界还会引发一种经典的蓝移不稳定性,即质量暴胀,最近的一些研究发现,内视界表现出更强的量子奇异行为。在这篇文章中,我们探讨了霍金辐射的量子效应,它在压缩潮汐力的存在下似乎预测了负温度。通过分析量子场与黑洞几何形状的相互作用,我们可以对黑洞内部视界附近发生的事情有更接近的半经典理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pancakification and negative Hawking temperatures
Vacuum models of charged or spinning black holes possess two horizons, the inner of which has the oft-overlooked property that gravitational tidal forces initially spaghettifying a freely falling observer will eventually change signs and flatten the observer like a pancake. Inner horizons also induce a classical blueshift instability known as mass inflation, and a number of recent studies have found that inner horizons exhibit even stronger quantum singular behavior. In this essay we explore the quantum effect of Hawking radiation, which in the presence of compressive tidal forces seems to predict negative temperatures. By analyzing the interaction of quantum fields with black hole geometries, we can come to a closer semiclassical understanding of what really happens near a black hole's inner horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics D
International Journal of Modern Physics D 地学天文-天文与天体物理
CiteScore
3.80
自引率
9.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.
期刊最新文献
Some specific wormhole solutions in extended f(R,G,T) gravity Dark energy based on exotic statistics Rotating regular black holes and other compact objects with a Tolman-type potential as a regular interior for the Kerr metric Numerical analyses of M31 dark matter profiles Qualitative probe of interacting dark energy with redshift-space distortions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1