东方繁花果蝇及其近缘种的生物学与生态学

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Fly Pub Date : 2022-05-01 DOI:10.1080/19336934.2022.2066953
Yuki Ishikawa, M. Kimura, M. Toda
{"title":"东方繁花果蝇及其近缘种的生物学与生态学","authors":"Yuki Ishikawa, M. Kimura, M. Toda","doi":"10.1080/19336934.2022.2066953","DOIUrl":null,"url":null,"abstract":"ABSTRACT Animals adapt to their environments in the course of evolution. One effective approach to elucidate mechanisms of adaptive evolution is to compare closely related species with model organisms in which knowledge of the molecular and physiological bases of various traits has been accumulated. Drosophila elegans and its close relatives, belonging to the same species group as the model organism D. melanogaster, exhibit various unique characteristics such as flower-breeding habit, courtship display, territoriality, sexual dimorphism, and colour polymorphism. Their ease of culturing and availability of genomic information makes them a useful model for understanding mechanisms of adaptive evolution. Here, we review the morphology, distribution, and phylogenetic relationships of D. elegans and related species, as well as their characteristic flower-dependent biology, food habits, and life-history traits. We also describe their unique mating and territorial behaviours and note their distinctive karyotype and the genetic mechanisms of morphological diversity that have recently been revealed.","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species\",\"authors\":\"Yuki Ishikawa, M. Kimura, M. Toda\",\"doi\":\"10.1080/19336934.2022.2066953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Animals adapt to their environments in the course of evolution. One effective approach to elucidate mechanisms of adaptive evolution is to compare closely related species with model organisms in which knowledge of the molecular and physiological bases of various traits has been accumulated. Drosophila elegans and its close relatives, belonging to the same species group as the model organism D. melanogaster, exhibit various unique characteristics such as flower-breeding habit, courtship display, territoriality, sexual dimorphism, and colour polymorphism. Their ease of culturing and availability of genomic information makes them a useful model for understanding mechanisms of adaptive evolution. Here, we review the morphology, distribution, and phylogenetic relationships of D. elegans and related species, as well as their characteristic flower-dependent biology, food habits, and life-history traits. We also describe their unique mating and territorial behaviours and note their distinctive karyotype and the genetic mechanisms of morphological diversity that have recently been revealed.\",\"PeriodicalId\":12128,\"journal\":{\"name\":\"Fly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fly\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336934.2022.2066953\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2022.2066953","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

动物在进化过程中适应环境。研究适应进化机制的一种有效方法是将亲缘关系密切的物种与模式生物进行比较,在模式生物中积累了各种特征的分子和生理基础知识。秀丽果蝇及其近亲与模式生物黑腹果蝇同属一个物种群,在繁花习性、求偶行为、领地性、两性二态性和颜色多态性等方面表现出许多独特的特征。它们的易于培养和基因组信息的可用性使它们成为理解适应性进化机制的有用模型。本文综述了线虫及其近缘种的形态、分布和系统发育关系,以及它们特有的依赖花朵的生物学特性、食性和生活史特征。我们还描述了它们独特的交配和领土行为,并注意到它们独特的核型和最近揭示的形态多样性的遗传机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species
ABSTRACT Animals adapt to their environments in the course of evolution. One effective approach to elucidate mechanisms of adaptive evolution is to compare closely related species with model organisms in which knowledge of the molecular and physiological bases of various traits has been accumulated. Drosophila elegans and its close relatives, belonging to the same species group as the model organism D. melanogaster, exhibit various unique characteristics such as flower-breeding habit, courtship display, territoriality, sexual dimorphism, and colour polymorphism. Their ease of culturing and availability of genomic information makes them a useful model for understanding mechanisms of adaptive evolution. Here, we review the morphology, distribution, and phylogenetic relationships of D. elegans and related species, as well as their characteristic flower-dependent biology, food habits, and life-history traits. We also describe their unique mating and territorial behaviours and note their distinctive karyotype and the genetic mechanisms of morphological diversity that have recently been revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fly
Fly 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions. Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.
期刊最新文献
Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2. A novel adipose loss-of-function mutant in Drosophila. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Conserved A-to-I RNA editing with non-conserved recoding expands the candidates of functional editing sites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1