{"title":"基于特征融合的自然场景文本信息挖掘方法","authors":"Feng Peng, Runmin Wang, Yiyun Hu, Guang Yang, Ying Zhou","doi":"10.1515/dema-2022-0255","DOIUrl":null,"url":null,"abstract":"Abstract As a crucial medium of information dissemination, text holds a pivotal role in a multitude of applications. However, text detection in complex and unstructured environments presents significant challenges, such as the presence of cluttered backgrounds, variations in appearance, and uneven lighting conditions. To address this issue, this study proposes a text detection framework that leverages multistage edge detection and contextual information. This framework deviates from traditional approaches by incorporating four primary processing steps, including text visual saliency region detection to accentuate the text regions and diminish background interference, multistage edge detection to enhance the conventional stroke width transform results, a texture-based and connected components-based integration to accurately distinguish text from the background, and a context fusion step to recover missing text regions and improve the recall of text detection. The proposed method was evaluated on two widely used benchmark datasets, i.e., the international conference on document analysis and recognition (ICDAR) 2005 dataset and the ICDAR 2011 dataset, and the results indicate the advancedness of the method.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature fusion-based text information mining method for natural scenes\",\"authors\":\"Feng Peng, Runmin Wang, Yiyun Hu, Guang Yang, Ying Zhou\",\"doi\":\"10.1515/dema-2022-0255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As a crucial medium of information dissemination, text holds a pivotal role in a multitude of applications. However, text detection in complex and unstructured environments presents significant challenges, such as the presence of cluttered backgrounds, variations in appearance, and uneven lighting conditions. To address this issue, this study proposes a text detection framework that leverages multistage edge detection and contextual information. This framework deviates from traditional approaches by incorporating four primary processing steps, including text visual saliency region detection to accentuate the text regions and diminish background interference, multistage edge detection to enhance the conventional stroke width transform results, a texture-based and connected components-based integration to accurately distinguish text from the background, and a context fusion step to recover missing text regions and improve the recall of text detection. The proposed method was evaluated on two widely used benchmark datasets, i.e., the international conference on document analysis and recognition (ICDAR) 2005 dataset and the ICDAR 2011 dataset, and the results indicate the advancedness of the method.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0255\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0255","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Feature fusion-based text information mining method for natural scenes
Abstract As a crucial medium of information dissemination, text holds a pivotal role in a multitude of applications. However, text detection in complex and unstructured environments presents significant challenges, such as the presence of cluttered backgrounds, variations in appearance, and uneven lighting conditions. To address this issue, this study proposes a text detection framework that leverages multistage edge detection and contextual information. This framework deviates from traditional approaches by incorporating four primary processing steps, including text visual saliency region detection to accentuate the text regions and diminish background interference, multistage edge detection to enhance the conventional stroke width transform results, a texture-based and connected components-based integration to accurately distinguish text from the background, and a context fusion step to recover missing text regions and improve the recall of text detection. The proposed method was evaluated on two widely used benchmark datasets, i.e., the international conference on document analysis and recognition (ICDAR) 2005 dataset and the ICDAR 2011 dataset, and the results indicate the advancedness of the method.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.