磁性Fe3O4@PPy复合微球对水溶液中汞的吸附与解吸

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2021-01-25 DOI:10.2166/WRD.2021.080
Xiao-qiang Cao, Fei Xiao, Xiao-yu Xie, Xuan-ke Li, Guang Li, Lin Li, Qing-jian Zhang, Wei Zhang, Xiao-fang You, Y. Gai, X. Lyu
{"title":"磁性Fe3O4@PPy复合微球对水溶液中汞的吸附与解吸","authors":"Xiao-qiang Cao, Fei Xiao, Xiao-yu Xie, Xuan-ke Li, Guang Li, Lin Li, Qing-jian Zhang, Wei Zhang, Xiao-fang You, Y. Gai, X. Lyu","doi":"10.2166/WRD.2021.080","DOIUrl":null,"url":null,"abstract":"\n Functional magnetic Fe3O4@PPy microspheres were prepared and characterized by XRD, FTIR, SEM, TEM, and magnetometer, and the adsorption of Hg(II) onto Fe3O4@PPy was investigated. The results showed that the adsorption of Hg(II) onto Fe3O4@PPy dramatically increases within 5 min and reaches adsorption equilibrium at 200 min. The adsorption of Hg(II) increases with pH increased, and a removal efficiency (RE) of 90.5% was obtained at pH 7.2. The isotherm studies revealed that the adsorption of Hg(II) onto the Fe3O4@PPy fits well with the Langmuir isotherm model, and the calculated qm value of 232.56 mg/g. The adsorption process of Hg(II) onto the Fe3O4@PPy is well-fitted by the pseudo-second-order model with a high correlation coefficient (R2) of 0.999. The thermodynamic coefficients (ΔH°, ΔS°, and ΔG°) were calculated from the temperature-dependent adsorption isotherms and illustrated that the adsorption of Hg(II) on the Fe3O4@PPy was spontaneous and endothermic. Different desorption agents were used to recover Hg(II) adsorbed onto Fe3O4@PPy, and a satisfactory recovery percentage of 93.0% was obtained by using 0.1 M HCl and 0.05 M NaCl.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adsorption and desorption of Hg(II) from aqueous solution using magnetic Fe3O4@PPy composite microspheres\",\"authors\":\"Xiao-qiang Cao, Fei Xiao, Xiao-yu Xie, Xuan-ke Li, Guang Li, Lin Li, Qing-jian Zhang, Wei Zhang, Xiao-fang You, Y. Gai, X. Lyu\",\"doi\":\"10.2166/WRD.2021.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Functional magnetic Fe3O4@PPy microspheres were prepared and characterized by XRD, FTIR, SEM, TEM, and magnetometer, and the adsorption of Hg(II) onto Fe3O4@PPy was investigated. The results showed that the adsorption of Hg(II) onto Fe3O4@PPy dramatically increases within 5 min and reaches adsorption equilibrium at 200 min. The adsorption of Hg(II) increases with pH increased, and a removal efficiency (RE) of 90.5% was obtained at pH 7.2. The isotherm studies revealed that the adsorption of Hg(II) onto the Fe3O4@PPy fits well with the Langmuir isotherm model, and the calculated qm value of 232.56 mg/g. The adsorption process of Hg(II) onto the Fe3O4@PPy is well-fitted by the pseudo-second-order model with a high correlation coefficient (R2) of 0.999. The thermodynamic coefficients (ΔH°, ΔS°, and ΔG°) were calculated from the temperature-dependent adsorption isotherms and illustrated that the adsorption of Hg(II) on the Fe3O4@PPy was spontaneous and endothermic. Different desorption agents were used to recover Hg(II) adsorbed onto Fe3O4@PPy, and a satisfactory recovery percentage of 93.0% was obtained by using 0.1 M HCl and 0.05 M NaCl.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WRD.2021.080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WRD.2021.080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 5

摘要

制备了功能磁性Fe3O4@PPy微球,并用XRD、FTIR、SEM、TEM和磁强计对其进行了表征,并研究了Fe3O4@PPy对Hg(II)的吸附。结果表明:Fe3O4@PPy对Hg(II)的吸附在5 min内急剧增加,在200 min时达到吸附平衡。随着pH的增加,Hg(II)的吸附量增加,在pH 7.2时,Hg(II)的去除率达到90.5%。等温线研究表明,Fe3O4@PPy吸附Hg(II)符合Langmuir等温线模型,计算得到的qm值为232.56 mg/g。Fe3O4@PPy吸附Hg(II)的拟二阶模型拟合良好,相关系数(R2)为0.999。热力学系数(ΔH°,ΔS°和ΔG°)由温度依赖的吸附等温线计算得到,表明Hg(II)在Fe3O4@PPy上的吸附是自发的、吸热的。采用不同的解吸剂对Fe3O4@PPy吸附的Hg(II)进行回收,0.1 M HCl和0.05 M NaCl的回收率为93.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adsorption and desorption of Hg(II) from aqueous solution using magnetic Fe3O4@PPy composite microspheres
Functional magnetic Fe3O4@PPy microspheres were prepared and characterized by XRD, FTIR, SEM, TEM, and magnetometer, and the adsorption of Hg(II) onto Fe3O4@PPy was investigated. The results showed that the adsorption of Hg(II) onto Fe3O4@PPy dramatically increases within 5 min and reaches adsorption equilibrium at 200 min. The adsorption of Hg(II) increases with pH increased, and a removal efficiency (RE) of 90.5% was obtained at pH 7.2. The isotherm studies revealed that the adsorption of Hg(II) onto the Fe3O4@PPy fits well with the Langmuir isotherm model, and the calculated qm value of 232.56 mg/g. The adsorption process of Hg(II) onto the Fe3O4@PPy is well-fitted by the pseudo-second-order model with a high correlation coefficient (R2) of 0.999. The thermodynamic coefficients (ΔH°, ΔS°, and ΔG°) were calculated from the temperature-dependent adsorption isotherms and illustrated that the adsorption of Hg(II) on the Fe3O4@PPy was spontaneous and endothermic. Different desorption agents were used to recover Hg(II) adsorbed onto Fe3O4@PPy, and a satisfactory recovery percentage of 93.0% was obtained by using 0.1 M HCl and 0.05 M NaCl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1