有机发光二极管的寿命建模:综述与分析

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Information Display Pub Date : 2022-09-27 DOI:10.1080/15980316.2022.2126018
Jaesang Lee
{"title":"有机发光二极管的寿命建模:综述与分析","authors":"Jaesang Lee","doi":"10.1080/15980316.2022.2126018","DOIUrl":null,"url":null,"abstract":"ABSTRACT Organic light-emitting diodes (OLEDs) of all kinds inevitably undergo permanent performance degradation over time, leading to burn-in in the displays made with the OLEDs. To compensate for display burn-in and extend product lifetimes, having a model that can precisely predict OLED degradation is most essential. In this work, we review a few select studies that focused on the physics-based analysis and modeling of OLED degradation. The framework and features of the lifetime models based on the physical mechanisms behind OLED degradation are discussed. In particular, the post-degradation performance of OLEDs is understood in terms of the detrimental effect of degradation-induced defects on the behavior of charges and excitons. Experimental attempts to identify the type and relevant characteristics of the defects are particularly important and thus, are dealt with in this review. Lastly, we discuss the relevant theories and methodologies for measuring the exciton distribution in OLEDs, which is one of the most crucial pieces of information in understanding the device characteristics. We emphasize the limitation of the current lifetime models and what needs to be improved for practical use to achieve a longer lifetime for OLED displays.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lifetime modeling for organic light-emitting diodes: a review and analysis\",\"authors\":\"Jaesang Lee\",\"doi\":\"10.1080/15980316.2022.2126018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Organic light-emitting diodes (OLEDs) of all kinds inevitably undergo permanent performance degradation over time, leading to burn-in in the displays made with the OLEDs. To compensate for display burn-in and extend product lifetimes, having a model that can precisely predict OLED degradation is most essential. In this work, we review a few select studies that focused on the physics-based analysis and modeling of OLED degradation. The framework and features of the lifetime models based on the physical mechanisms behind OLED degradation are discussed. In particular, the post-degradation performance of OLEDs is understood in terms of the detrimental effect of degradation-induced defects on the behavior of charges and excitons. Experimental attempts to identify the type and relevant characteristics of the defects are particularly important and thus, are dealt with in this review. Lastly, we discuss the relevant theories and methodologies for measuring the exciton distribution in OLEDs, which is one of the most crucial pieces of information in understanding the device characteristics. We emphasize the limitation of the current lifetime models and what needs to be improved for practical use to achieve a longer lifetime for OLED displays.\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2022.2126018\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2022.2126018","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要:随着时间的推移,各种有机发光二极管(OLED)不可避免地会发生永久性的性能退化,导致用OLED制成的显示器老化。为了补偿显示器老化并延长产品寿命,拥有一个能够准确预测OLED退化的模型是最重要的。在这项工作中,我们回顾了一些精选的研究,这些研究侧重于OLED退化的基于物理的分析和建模。讨论了基于OLED退化背后物理机制的寿命模型的框架和特征。特别地,OLED的降解后性能是根据降解诱导的缺陷对电荷和激子行为的有害影响来理解的。识别缺陷类型和相关特征的实验尝试尤为重要,因此,本文将对此进行综述。最后,我们讨论了测量OLED中激子分布的相关理论和方法,这是理解器件特性的最关键信息之一。我们强调了当前寿命模型的局限性,以及在实际使用中需要改进的地方,以实现OLED显示器更长的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lifetime modeling for organic light-emitting diodes: a review and analysis
ABSTRACT Organic light-emitting diodes (OLEDs) of all kinds inevitably undergo permanent performance degradation over time, leading to burn-in in the displays made with the OLEDs. To compensate for display burn-in and extend product lifetimes, having a model that can precisely predict OLED degradation is most essential. In this work, we review a few select studies that focused on the physics-based analysis and modeling of OLED degradation. The framework and features of the lifetime models based on the physical mechanisms behind OLED degradation are discussed. In particular, the post-degradation performance of OLEDs is understood in terms of the detrimental effect of degradation-induced defects on the behavior of charges and excitons. Experimental attempts to identify the type and relevant characteristics of the defects are particularly important and thus, are dealt with in this review. Lastly, we discuss the relevant theories and methodologies for measuring the exciton distribution in OLEDs, which is one of the most crucial pieces of information in understanding the device characteristics. We emphasize the limitation of the current lifetime models and what needs to be improved for practical use to achieve a longer lifetime for OLED displays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
期刊最新文献
Tunneling assisted p-contact free GaN-InGaN green light-emitting diodes Deterioration of Li-doped phenanthroline-based charge generation layer for tandem organic light-emitting diodes A low-power metal–oxide scan driver circuit outputting non-overlapping pulses with DC power-supplied buffer Advances in display technology: augmented reality, virtual reality, quantum dot-based light-emitting diodes, and organic light-emitting diodes Advances in diffractive liquid crystal grating devices using patterned electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1