在粗糙的Bergomi模型中对VIX期权进行多层蒙特卡罗模拟

IF 0.8 4区 经济学 Q4 BUSINESS, FINANCE Journal of Computational Finance Pub Date : 2021-05-11 DOI:10.21314/jcf.2022.023
Florian Bourgey, S. Marco
{"title":"在粗糙的Bergomi模型中对VIX期权进行多层蒙特卡罗模拟","authors":"Florian Bourgey, S. Marco","doi":"10.21314/jcf.2022.023","DOIUrl":null,"url":null,"abstract":"We consider the pricing of VIX options in the rough Bergomi model. In this setting, the VIX random variable is defined by the one-dimensional integral of the exponential of a Gaussian process with correlated increments, hence approximate samples of the VIX can be constructed via discretization of the integral and simulation of a correlated Gaussian vector. A Monte-Carlo estimator of VIX options based on a rectangle discretization scheme and exact Gaussian sampling via the Cholesky method has a computational complexity of order $\\mathcal{O}(\\varepsilon^{-4})$ when the mean-squared error is set to $\\varepsilon^2$. We demonstrate that this cost can be reduced to $\\mathcal{O}(\\varepsilon^{-2} \\log^2(\\varepsilon))$ combining the scheme above with the multilevel method, and further reduced to the asymptotically optimal cost $\\mathcal{O}(\\varepsilon^{-2})$ when using a trapezoidal discretization. We provide numerical experiments highlighting the efficiency of the multilevel approach in the pricing of VIX options in such a rough forward variance setting.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multilevel Monte Carlo simulation for VIX options in the rough Bergomi model\",\"authors\":\"Florian Bourgey, S. Marco\",\"doi\":\"10.21314/jcf.2022.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the pricing of VIX options in the rough Bergomi model. In this setting, the VIX random variable is defined by the one-dimensional integral of the exponential of a Gaussian process with correlated increments, hence approximate samples of the VIX can be constructed via discretization of the integral and simulation of a correlated Gaussian vector. A Monte-Carlo estimator of VIX options based on a rectangle discretization scheme and exact Gaussian sampling via the Cholesky method has a computational complexity of order $\\\\mathcal{O}(\\\\varepsilon^{-4})$ when the mean-squared error is set to $\\\\varepsilon^2$. We demonstrate that this cost can be reduced to $\\\\mathcal{O}(\\\\varepsilon^{-2} \\\\log^2(\\\\varepsilon))$ combining the scheme above with the multilevel method, and further reduced to the asymptotically optimal cost $\\\\mathcal{O}(\\\\varepsilon^{-2})$ when using a trapezoidal discretization. We provide numerical experiments highlighting the efficiency of the multilevel approach in the pricing of VIX options in such a rough forward variance setting.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jcf.2022.023\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcf.2022.023","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

我们在粗糙Bergomi模型中考虑波动率指数期权的定价。在这种设置中,VIX随机变量由具有相关增量的高斯过程的指数的一维积分定义,因此可以通过积分的离散化和相关高斯向量的模拟来构造VIX的近似样本。当均方误差设置为$\varepsilon^2$时,基于矩形离散化方案和通过Cholesky方法的精确高斯采样的VIX选项的蒙特卡罗估计器的计算复杂度为$\mathcal{O}(\varepsilion^{-4})$阶。我们证明,将上述方案与多级方法相结合,该成本可以降低到$\mathcal{O}(\varepsilon ^{-2}\log^2(\varepilon))$,并在使用梯形离散化时进一步降低到渐近最优成本$\mathical{O}(\varEpilon ^{-2})$。我们提供了数值实验,强调了在这种粗略的前向方差设置下,多级方法在波动率指数期权定价中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel Monte Carlo simulation for VIX options in the rough Bergomi model
We consider the pricing of VIX options in the rough Bergomi model. In this setting, the VIX random variable is defined by the one-dimensional integral of the exponential of a Gaussian process with correlated increments, hence approximate samples of the VIX can be constructed via discretization of the integral and simulation of a correlated Gaussian vector. A Monte-Carlo estimator of VIX options based on a rectangle discretization scheme and exact Gaussian sampling via the Cholesky method has a computational complexity of order $\mathcal{O}(\varepsilon^{-4})$ when the mean-squared error is set to $\varepsilon^2$. We demonstrate that this cost can be reduced to $\mathcal{O}(\varepsilon^{-2} \log^2(\varepsilon))$ combining the scheme above with the multilevel method, and further reduced to the asymptotically optimal cost $\mathcal{O}(\varepsilon^{-2})$ when using a trapezoidal discretization. We provide numerical experiments highlighting the efficiency of the multilevel approach in the pricing of VIX options in such a rough forward variance setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
8
期刊介绍: The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.
期刊最新文献
Genus Aconitum (Ranunculaceae) in the Ukrainian Carpathians and adjacent territories. Toward a unified implementation of regression Monte Carlo algorithms Neural stochastic differential equations for conditional time series generation using the Signature-Wasserstein-1 metric Robust pricing and hedging via neural stochastic differential equations Estimating risks of European option books using neural stochastic differential equation market models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1