用高斯过程分类估计吸引区域

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS European Journal of Control Pub Date : 2023-11-01 DOI:10.1016/j.ejcon.2023.100856
Ke Wang , Prathyush P. Menon , Joost Veenman , Samir Bennani
{"title":"用高斯过程分类估计吸引区域","authors":"Ke Wang ,&nbsp;Prathyush P. Menon ,&nbsp;Joost Veenman ,&nbsp;Samir Bennani","doi":"10.1016/j.ejcon.2023.100856","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium points, a challenging problem for a general nonlinear system, using binary Gaussian process classification (GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state space can be classified in the region of attraction or not. Importantly the proposed GPC approach for determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active learning scheme helps to update the GPC model and yield better predictions by selecting informative observations from the state space sequentially. The methodology is applied to several examples to illustrate the effectiveness of this approach.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"74 ","pages":"Article 100856"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0947358023000857/pdfft?md5=d85a18b0a17af367f95975674a1aa103&pid=1-s2.0-S0947358023000857-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimation of region of attraction with Gaussian process classification\",\"authors\":\"Ke Wang ,&nbsp;Prathyush P. Menon ,&nbsp;Joost Veenman ,&nbsp;Samir Bennani\",\"doi\":\"10.1016/j.ejcon.2023.100856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium points, a challenging problem for a general nonlinear system, using binary Gaussian process classification (GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state space can be classified in the region of attraction or not. Importantly the proposed GPC approach for determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active learning scheme helps to update the GPC model and yield better predictions by selecting informative observations from the state space sequentially. The methodology is applied to several examples to illustrate the effectiveness of this approach.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"74 \",\"pages\":\"Article 100856\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000857/pdfft?md5=d85a18b0a17af367f95975674a1aa103&pid=1-s2.0-S0947358023000857-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000857\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358023000857","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于二值高斯过程分类(GPC)的稳定平衡点吸引区域(ROA)评估方法,这是一般非线性系统的一个挑战性问题。对这种方法的兴趣源于这样一个事实,即属于系统状态空间的任意点可以在吸引区域内分类或不分类。重要的是,建议的用于确定ROA的GPC方法给出了与估计相关的最小置信水平。此外,主动学习方案有助于更新GPC模型,并通过顺序地从状态空间中选择信息观测值来获得更好的预测结果。将该方法应用于几个实例,以说明该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of region of attraction with Gaussian process classification

This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium points, a challenging problem for a general nonlinear system, using binary Gaussian process classification (GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state space can be classified in the region of attraction or not. Importantly the proposed GPC approach for determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active learning scheme helps to update the GPC model and yield better predictions by selecting informative observations from the state space sequentially. The methodology is applied to several examples to illustrate the effectiveness of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
期刊最新文献
Editorial Board Data-driven event-triggering mechanism for linear systems subject to input saturation Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning Communication-aware formation control for networks of AUVs Scaled graphs for reset control system analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1