使用Web地图服务在区域尺度上绘制小冰河期冰川范围

IF 2.5 4区 地球科学 Q2 GEOGRAPHY, PHYSICAL Annals of Glaciology Pub Date : 2023-06-02 DOI:10.1017/aog.2023.39
Johannes Reinthaler, F. Paul
{"title":"使用Web地图服务在区域尺度上绘制小冰河期冰川范围","authors":"Johannes Reinthaler, F. Paul","doi":"10.1017/aog.2023.39","DOIUrl":null,"url":null,"abstract":"\n Extending the record of glacier area changes into the past improves our understanding of climate change impacts. Although analogue maps showing historic glacier extents are abundant, digital outlines from before the satellite era are sparse as the digitisation of moraines and trimlines on freely available satellite images is challenging. With the now available very high-resolution images provided by Web Map Services (WMS), new doors are open for the precise digitisation. Here, we used the ESRI WMS to digitise Little Ice Age (LIA) glacier extents and present area changes since the LIA in four selected regions along with a detailed uncertainty analysis. We used modern glacier outlines as a starting point and additionally consulted Sentinel-2 images, the ArcticDEM and historic maps for interpretation. Dating records from the literature allowed calculating area change rates. In total, 493 LIA glaciers (4640 km2, now 891 ice bodies with 3590 km2) were digitised, yielding relative area changes of −20% (−0.14% a−1), −15% (−0.10% a−1), −26% (−0.16% a−1) and −61% (−0.19% a−1) for Alaska, Baffin Island, Novaya Zemlya and the tropics, respectively. The ESRI WMS images are a great asset to precisely map moraines and trimlines, but information about the timing of the related extents requires further sources.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a Web Map Service to map Little Ice Age glacier extents at regional scales\",\"authors\":\"Johannes Reinthaler, F. Paul\",\"doi\":\"10.1017/aog.2023.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Extending the record of glacier area changes into the past improves our understanding of climate change impacts. Although analogue maps showing historic glacier extents are abundant, digital outlines from before the satellite era are sparse as the digitisation of moraines and trimlines on freely available satellite images is challenging. With the now available very high-resolution images provided by Web Map Services (WMS), new doors are open for the precise digitisation. Here, we used the ESRI WMS to digitise Little Ice Age (LIA) glacier extents and present area changes since the LIA in four selected regions along with a detailed uncertainty analysis. We used modern glacier outlines as a starting point and additionally consulted Sentinel-2 images, the ArcticDEM and historic maps for interpretation. Dating records from the literature allowed calculating area change rates. In total, 493 LIA glaciers (4640 km2, now 891 ice bodies with 3590 km2) were digitised, yielding relative area changes of −20% (−0.14% a−1), −15% (−0.10% a−1), −26% (−0.16% a−1) and −61% (−0.19% a−1) for Alaska, Baffin Island, Novaya Zemlya and the tropics, respectively. The ESRI WMS images are a great asset to precisely map moraines and trimlines, but information about the timing of the related extents requires further sources.\",\"PeriodicalId\":8211,\"journal\":{\"name\":\"Annals of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/aog.2023.39\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2023.39","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将冰川面积变化的记录延伸到过去,可以提高我们对气候变化影响的理解。虽然显示历史冰川范围的模拟地图丰富,但卫星时代之前的数字轮廓很少,因为免费卫星图像上的冰碛和边线的数字化具有挑战性。随着网络地图服务(WMS)提供的高分辨率图像的出现,为精确的数字化打开了新的大门。在这里,我们使用ESRI WMS对四个选定地区的小冰期(LIA)冰川范围和小冰期以来的面积变化进行了数字化,并进行了详细的不确定性分析。我们使用现代冰川轮廓作为起点,并参考了Sentinel-2图像、ArcticDEM和历史地图进行解释。根据文献记录的年代可以计算出面积变化率。共有493个冰川(4640 km2)和891个冰体(3590 km2)被数字化,阿拉斯加、巴芬岛、新地岛和热带地区的相对面积变化分别为- 20% (- 0.14% a - 1)、- 15% (- 0.10% a - 1)、- 26% (- 0.16% a - 1)和- 61% (- 0.19% a - 1)。ESRI WMS图像是精确绘制冰碛和边线的重要资产,但有关相关范围的时间信息需要进一步的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a Web Map Service to map Little Ice Age glacier extents at regional scales
Extending the record of glacier area changes into the past improves our understanding of climate change impacts. Although analogue maps showing historic glacier extents are abundant, digital outlines from before the satellite era are sparse as the digitisation of moraines and trimlines on freely available satellite images is challenging. With the now available very high-resolution images provided by Web Map Services (WMS), new doors are open for the precise digitisation. Here, we used the ESRI WMS to digitise Little Ice Age (LIA) glacier extents and present area changes since the LIA in four selected regions along with a detailed uncertainty analysis. We used modern glacier outlines as a starting point and additionally consulted Sentinel-2 images, the ArcticDEM and historic maps for interpretation. Dating records from the literature allowed calculating area change rates. In total, 493 LIA glaciers (4640 km2, now 891 ice bodies with 3590 km2) were digitised, yielding relative area changes of −20% (−0.14% a−1), −15% (−0.10% a−1), −26% (−0.16% a−1) and −61% (−0.19% a−1) for Alaska, Baffin Island, Novaya Zemlya and the tropics, respectively. The ESRI WMS images are a great asset to precisely map moraines and trimlines, but information about the timing of the related extents requires further sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Glaciology
Annals of Glaciology GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.
期刊最新文献
Dye tracing of upward brine migration in snow MoT-PSA: a two-layer depth-averaged model for simulation of powder snow avalanches on 3-D terrain Resolution enhanced sea ice concentration: a new algorithm applied to AMSR2 microwave radiometry data Particle tracking in snow avalanches with in situ calibrated inertial measurement units Updating glacier inventories on the periphery of Antarctica and Greenland using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1