分布式顺序估计程序

Pub Date : 2023-02-11 DOI:10.1002/cjs.11762
Zhuojian Chen, Zhanfeng Wang, Yuan-chin Ivan Chang
{"title":"分布式顺序估计程序","authors":"Zhuojian Chen,&nbsp;Zhanfeng Wang,&nbsp;Yuan-chin Ivan Chang","doi":"10.1002/cjs.11762","DOIUrl":null,"url":null,"abstract":"<p>Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel-computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed sequential estimation procedures\",\"authors\":\"Zhuojian Chen,&nbsp;Zhanfeng Wang,&nbsp;Yuan-chin Ivan Chang\",\"doi\":\"10.1002/cjs.11762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel-computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从分散的来源或地点收集到的数据通常具有不同的分布或受污染的观测结果。主动学习程序允许我们在收集新数据建立模型时对数据进行评估。因此,将多个主动学习程序结合在一起是一个很有前景的想法,即使收集到的数据集受到了污染。在这里,我们研究了如何通过多台机器或并行计算框架,同时进行并整合多个自适应序列程序,以产生有效的结果。为了避免复杂建模过程的干扰,我们使用线性模型的置信集估计来说明所提出的方法,并讨论该方法的统计特性。然后,我们使用合成数据和真实数据对其性能进行评估。我们使用 Python 实现了我们的方法,并通过 Github 发布在 https://github.com/zhuojianc/dsep 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Distributed sequential estimation procedures

Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel-computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1