J. Juoksukangas, J. Hintikka, A. Lehtovaara, A. Mäntylä, J. Vaara, T. Frondelius
{"title":"避免微动接触的高摩擦峰","authors":"J. Juoksukangas, J. Hintikka, A. Lehtovaara, A. Mäntylä, J. Vaara, T. Frondelius","doi":"10.23998/rm.76266","DOIUrl":null,"url":null,"abstract":"Fretting fatigue and wear may exist if two parts have small amplitude relative rubbing between the contacting surfaces. A peak in the coefficient of friction typically occurs during the first thousands of loading cycles in dry fretting contact with quenched and tempered steel. This peak is related to adhesive friction and wear causing non-Coulomb friction and high local contact stresses possibly leading to cracking. The focus of the study is the effect of different experimental methods on the frictional behavior of the fretting contact between the steel surfaces. The use of pre-corroded specimens and contact lubrication delayed and reduced the initial peak. However, a pre-added third body layer removed the peak completely.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":"53 1","pages":"12-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Avoiding the high friction peak in fretting contact\",\"authors\":\"J. Juoksukangas, J. Hintikka, A. Lehtovaara, A. Mäntylä, J. Vaara, T. Frondelius\",\"doi\":\"10.23998/rm.76266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fretting fatigue and wear may exist if two parts have small amplitude relative rubbing between the contacting surfaces. A peak in the coefficient of friction typically occurs during the first thousands of loading cycles in dry fretting contact with quenched and tempered steel. This peak is related to adhesive friction and wear causing non-Coulomb friction and high local contact stresses possibly leading to cracking. The focus of the study is the effect of different experimental methods on the frictional behavior of the fretting contact between the steel surfaces. The use of pre-corroded specimens and contact lubrication delayed and reduced the initial peak. However, a pre-added third body layer removed the peak completely.\",\"PeriodicalId\":52331,\"journal\":{\"name\":\"Rakenteiden Mekaniikka\",\"volume\":\"53 1\",\"pages\":\"12-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rakenteiden Mekaniikka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23998/rm.76266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.76266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Avoiding the high friction peak in fretting contact
Fretting fatigue and wear may exist if two parts have small amplitude relative rubbing between the contacting surfaces. A peak in the coefficient of friction typically occurs during the first thousands of loading cycles in dry fretting contact with quenched and tempered steel. This peak is related to adhesive friction and wear causing non-Coulomb friction and high local contact stresses possibly leading to cracking. The focus of the study is the effect of different experimental methods on the frictional behavior of the fretting contact between the steel surfaces. The use of pre-corroded specimens and contact lubrication delayed and reduced the initial peak. However, a pre-added third body layer removed the peak completely.