稀土氧化物掺杂氧化锆制备热障涂层复合陶瓷

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2023-02-01 DOI:10.1007/s11106-023-00331-2
O. V. Dudnik, S. M. Lakiza, M. I. Grechanyuk, V. P. Red’ko, I. O. Marek, A. O. Makudera, V. B. Shmibelsky, O. K. Ruban
{"title":"稀土氧化物掺杂氧化锆制备热障涂层复合陶瓷","authors":"O. V. Dudnik,&nbsp;S. M. Lakiza,&nbsp;M. I. Grechanyuk,&nbsp;V. P. Red’ko,&nbsp;I. O. Marek,&nbsp;A. O. Makudera,&nbsp;V. B. Shmibelsky,&nbsp;O. K. Ruban","doi":"10.1007/s11106-023-00331-2","DOIUrl":null,"url":null,"abstract":"<div><div><p>The thermal fatigue life of zirconia-based complex composite ceramics doped with a mixture of rare earth oxides was studied. Two concentrates of rare earth oxides were chosen (wt.%): 1) cerium- subgroup concentrate of composition 62.4 CeO<sub>2</sub>, 13.5 La<sub>2</sub>O<sub>3</sub>, 10.9 Nd<sub>2</sub>O<sub>3</sub>, 3.9 Pr<sub>6</sub>O<sub>11</sub>, 0.92 Sm<sub>2</sub>O<sub>3</sub>, 1.2 Gd<sub>2</sub>O<sub>3</sub>, 0.24 Eu<sub>2</sub>O<sub>3</sub>, 2.66 ZrO<sub>2</sub>, 1.2 Al<sub>2</sub>O<sub>3</sub>, 1.7 SiO<sub>2</sub>, and 1.38 other oxides (light concentrate (LC)) and 2) yttrium-subgroup concentrate of composition 13.3 Y<sub>2</sub>O<sub>3</sub>, 1.22 Tb<sub>4</sub>O<sub>7</sub>, 33.2 Dy<sub>2</sub>O<sub>3</sub>, 8.9 Ho<sub>2</sub>O<sub>3</sub>, 21.8 Er<sub>2</sub>O<sub>3</sub>, 1.86 Tm<sub>2</sub>O<sub>3</sub>, 12.5 Yb<sub>2</sub>O<sub>3</sub>, 0.57 Lu<sub>2</sub>O<sub>3</sub>, and 6.65 other oxides (heavy concentrate (HC)). Two-layer metal/ceramic thermal-barrier coatings (TBCs) were deposited on gas turbine engine blades by electron-beam physical vapor deposition (EB-PVD) in one process cycle. The properties of ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC TBC ceramic top coats were compared to those of a standard yttria-stabilized zirconia layer (ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub>). The thermal fatigue experiment was performed by heating the samples to 1100°C in a muffle furnace for 5 min, holding them at this temperature for 50 min, and cooling in water for 5 min. The standard ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub> layer withstood 138 thermal cycles, while the ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC layers withstood 161 thermal cycles. The porous microstructure of the ceramic layers developed during thermal cycling was found to depend on laminar microstructures acquired by the layers in the EB-PVD process. The number of spherical pores in the ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC layers was much higher than in the ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub> layer. This increased their thermal fatigue life by 16% compared to the standard coating. An integrated approach to the choice of the ceramic top coat composition based on ZrO<sub>2</sub> solid solutions doped with natural rare earth oxide concentrates and of the technique for their deposition, as well as improvement in the coating architecture, will promote cost-effective TBCs with the properties required.</p></div></div>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Composite Ceramics for Thermal-Barrier Coatings Produced from Zirconia Doped with Rare Earth Oxides\",\"authors\":\"O. V. Dudnik,&nbsp;S. M. Lakiza,&nbsp;M. I. Grechanyuk,&nbsp;V. P. Red’ko,&nbsp;I. O. Marek,&nbsp;A. O. Makudera,&nbsp;V. B. Shmibelsky,&nbsp;O. K. Ruban\",\"doi\":\"10.1007/s11106-023-00331-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>The thermal fatigue life of zirconia-based complex composite ceramics doped with a mixture of rare earth oxides was studied. Two concentrates of rare earth oxides were chosen (wt.%): 1) cerium- subgroup concentrate of composition 62.4 CeO<sub>2</sub>, 13.5 La<sub>2</sub>O<sub>3</sub>, 10.9 Nd<sub>2</sub>O<sub>3</sub>, 3.9 Pr<sub>6</sub>O<sub>11</sub>, 0.92 Sm<sub>2</sub>O<sub>3</sub>, 1.2 Gd<sub>2</sub>O<sub>3</sub>, 0.24 Eu<sub>2</sub>O<sub>3</sub>, 2.66 ZrO<sub>2</sub>, 1.2 Al<sub>2</sub>O<sub>3</sub>, 1.7 SiO<sub>2</sub>, and 1.38 other oxides (light concentrate (LC)) and 2) yttrium-subgroup concentrate of composition 13.3 Y<sub>2</sub>O<sub>3</sub>, 1.22 Tb<sub>4</sub>O<sub>7</sub>, 33.2 Dy<sub>2</sub>O<sub>3</sub>, 8.9 Ho<sub>2</sub>O<sub>3</sub>, 21.8 Er<sub>2</sub>O<sub>3</sub>, 1.86 Tm<sub>2</sub>O<sub>3</sub>, 12.5 Yb<sub>2</sub>O<sub>3</sub>, 0.57 Lu<sub>2</sub>O<sub>3</sub>, and 6.65 other oxides (heavy concentrate (HC)). Two-layer metal/ceramic thermal-barrier coatings (TBCs) were deposited on gas turbine engine blades by electron-beam physical vapor deposition (EB-PVD) in one process cycle. The properties of ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC TBC ceramic top coats were compared to those of a standard yttria-stabilized zirconia layer (ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub>). The thermal fatigue experiment was performed by heating the samples to 1100°C in a muffle furnace for 5 min, holding them at this temperature for 50 min, and cooling in water for 5 min. The standard ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub> layer withstood 138 thermal cycles, while the ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC layers withstood 161 thermal cycles. The porous microstructure of the ceramic layers developed during thermal cycling was found to depend on laminar microstructures acquired by the layers in the EB-PVD process. The number of spherical pores in the ZrO<sub>2</sub>–LC and ZrO<sub>2</sub>–HC layers was much higher than in the ZrO<sub>2</sub>–Y<sub>2</sub>O<sub>3</sub> layer. This increased their thermal fatigue life by 16% compared to the standard coating. An integrated approach to the choice of the ceramic top coat composition based on ZrO<sub>2</sub> solid solutions doped with natural rare earth oxide concentrates and of the technique for their deposition, as well as improvement in the coating architecture, will promote cost-effective TBCs with the properties required.</p></div></div>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-023-00331-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00331-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了稀土氧化物掺杂氧化锆基复合陶瓷的热疲劳寿命。选择两种稀土氧化物精矿(wt.%): 1)铈亚群精矿(62.4 CeO2、13.5 La2O3、10.9 Nd2O3、3.9 Pr6O11、0.92 Sm2O3、1.2 Gd2O3、0.24 Eu2O3、2.66 ZrO2、1.2 Al2O3、1.7 SiO2和1.38其他氧化物(轻精矿(LC)); 2)钇亚群精矿(13.3 Y2O3、1.22 Tb4O7、33.2 Dy2O3、8.9 Ho2O3、21.8 Er2O3、1.86 Tm2O3、12.5 Yb2O3、0.57 Lu2O3和6.65其他氧化物)(重精矿(HC))。采用电子束物理气相沉积(EB-PVD)技术在一个工艺周期内沉积了两层金属/陶瓷热障涂层(tbc)。比较了ZrO2-LC和ZrO2-HC TBC陶瓷面涂层与标准氧化钇稳定氧化锆层(ZrO2-Y2O3)的性能。热疲劳实验通过将样品在马弗炉中加热到1100℃5 min,在此温度下保温50 min,然后在水中冷却5 min进行。ZrO2-Y2O3标准层的热循环次数为138次,ZrO2-LC和ZrO2-HC层的热循环次数为161次。发现热循环过程中形成的陶瓷层的多孔微观结构依赖于EB-PVD工艺中获得的层状微观结构。ZrO2-LC和ZrO2-HC层的球形孔数量远高于ZrO2-Y2O3层。与标准涂层相比,这使其热疲劳寿命增加了16%。基于掺杂天然稀土氧化物精矿的ZrO2固溶体的陶瓷面漆成分选择及其沉积技术的综合方法,以及涂层结构的改进,将促进具有所需性能的具有成本效益的tbc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite Ceramics for Thermal-Barrier Coatings Produced from Zirconia Doped with Rare Earth Oxides

The thermal fatigue life of zirconia-based complex composite ceramics doped with a mixture of rare earth oxides was studied. Two concentrates of rare earth oxides were chosen (wt.%): 1) cerium- subgroup concentrate of composition 62.4 CeO2, 13.5 La2O3, 10.9 Nd2O3, 3.9 Pr6O11, 0.92 Sm2O3, 1.2 Gd2O3, 0.24 Eu2O3, 2.66 ZrO2, 1.2 Al2O3, 1.7 SiO2, and 1.38 other oxides (light concentrate (LC)) and 2) yttrium-subgroup concentrate of composition 13.3 Y2O3, 1.22 Tb4O7, 33.2 Dy2O3, 8.9 Ho2O3, 21.8 Er2O3, 1.86 Tm2O3, 12.5 Yb2O3, 0.57 Lu2O3, and 6.65 other oxides (heavy concentrate (HC)). Two-layer metal/ceramic thermal-barrier coatings (TBCs) were deposited on gas turbine engine blades by electron-beam physical vapor deposition (EB-PVD) in one process cycle. The properties of ZrO2–LC and ZrO2–HC TBC ceramic top coats were compared to those of a standard yttria-stabilized zirconia layer (ZrO2–Y2O3). The thermal fatigue experiment was performed by heating the samples to 1100°C in a muffle furnace for 5 min, holding them at this temperature for 50 min, and cooling in water for 5 min. The standard ZrO2–Y2O3 layer withstood 138 thermal cycles, while the ZrO2–LC and ZrO2–HC layers withstood 161 thermal cycles. The porous microstructure of the ceramic layers developed during thermal cycling was found to depend on laminar microstructures acquired by the layers in the EB-PVD process. The number of spherical pores in the ZrO2–LC and ZrO2–HC layers was much higher than in the ZrO2–Y2O3 layer. This increased their thermal fatigue life by 16% compared to the standard coating. An integrated approach to the choice of the ceramic top coat composition based on ZrO2 solid solutions doped with natural rare earth oxide concentrates and of the technique for their deposition, as well as improvement in the coating architecture, will promote cost-effective TBCs with the properties required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Structure and Mechanical Properties of WC-Based Hardmetal with a High-Entropy NiFeCrWMo Binder Effective Plastic Properties of Porous Materials with an Inverse Opal Structure DEM Research on Stress and Force Chains during Warm Compaction of Intricate Parts Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering Study of Geometric Parameters and Mechanical Properties of Metal-Based Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1