模糊逻辑、遗传算法和人工神经网络在认知无线电网络中的应用综述

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2022-07-01 DOI:10.1177/15501329221113508
A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif
{"title":"模糊逻辑、遗传算法和人工神经网络在认知无线电网络中的应用综述","authors":"A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif","doi":"10.1177/15501329221113508","DOIUrl":null,"url":null,"abstract":"Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review\",\"authors\":\"A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif\",\"doi\":\"10.1177/15501329221113508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221113508\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221113508","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

认知无线电有望在捕捉远程网络上不断增长的流量兴趣方面发挥重要作用。为了提高无线电范围的使用率,认知无线电中心检测天气,评估露天质量,然后做出某些决定并分配高管的空间资产。认知无线电与人工智能和人工智能方法协同工作,为连续的生产周期提供灵活和智能的分配。其目的是以调查研究的形式提供单一的信息来源,使学者能够更好地了解模糊逻辑、遗传算法和人工神经网络等人工智能方法如何用于各种认知无线电系统。本研究考察了认知无线电引擎中用于提高认知无线电网络认知能力的各种人工智能方法。在书面审计中使用了计算机推理方法,如模糊逻辑、进化算法和人工神经网络。本主题还涵盖认知无线电网络的实现以及认知无线电系统中出现的典型学习挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review
Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network Convex Combination for Wireless Localization Using Biased RSS Measurements Research on Visual SLAM Navigation Techniques for Dynamic Environments Improved Private Data Protection Scheme for Blockchain Smart Contracts Parameter Identification of Frame Structures by considering Shear Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1