A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif
{"title":"模糊逻辑、遗传算法和人工神经网络在认知无线电网络中的应用综述","authors":"A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif","doi":"10.1177/15501329221113508","DOIUrl":null,"url":null,"abstract":"Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review\",\"authors\":\"A. Alkhayyat, Firas Abedi, A. Bagwari, Pooja Joshi, H. Jawad, S. Mahmood, Y. K. Yousif\",\"doi\":\"10.1177/15501329221113508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221113508\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221113508","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fuzzy logic, genetic algorithms, and artificial neural networks applied to cognitive radio networks: A review
Cognitive radios are expected to play an important role in capturing the constantly growing traffic interest on remote networks. To improve the usage of the radio range, a cognitive radio hub detects the weather, evaluates the open-air qualities, and then makes certain decisions and distributes the executives’ space assets. The cognitive radio works in tandem with artificial intelligence and artificial intelligence methodologies to provide a flexible and intelligent allocation for continuous production cycles. The purpose is to provide a single source of information in the form of a survey research to enable academics better understand how artificial intelligence methodologies, such as fuzzy logics, genetic algorithms, and artificial neural networks, are used to various cognitive radio systems. The various artificial intelligence approaches used in cognitive radio engines to improve cognition capabilities in cognitive radio networks are examined in this study. Computerized reasoning approaches, such as fuzzy logic, evolutionary algorithms, and artificial neural networks, are used in the writing audit. This topic also covers cognitive radio network implementation and the typical learning challenges that arise in cognitive radio systems.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.