污泥连续改良对石灰性土壤-小麦/玉米轮作系统砷积累的预测

IF 2.3 3区 农林科学 Q1 AGRONOMY Plant, Soil and Environment Pub Date : 2022-11-16 DOI:10.17221/207/2022-pse
H. Chang, Lin lin Huang, P. Song, L. Ru
{"title":"污泥连续改良对石灰性土壤-小麦/玉米轮作系统砷积累的预测","authors":"H. Chang, Lin lin Huang, P. Song, L. Ru","doi":"10.17221/207/2022-pse","DOIUrl":null,"url":null,"abstract":"A potted experiment was conducted to explore the accumulation of arsenic (As) and predict the uptake of As by a wheat-maize rotation system in calcareous soil with different rates of sewage sludge (SS) amendment over two consecutive years. The SS amendment decreased the pH value of calcareous soil but increased the cation exchange capacity (CEC), calcium carbonate (CC), organic carbon (OC) and As accumulation in soil and crops with increasing SS addition. The As bioconcentration factor (BCF) of wheat and maize had a significant negative correlation with pH, CC and a significant positive correlation with OC. Soil CEC had a significant positive correlation only with the As BCF of wheat. Regression analysis showed that soil As, pH, OC, CC and CEC were good predictors of the As concentration in wheat/maize. The regression model for each part of the wheat/maize plants had a high model efficiency value and explained 67~88% of the variability. The R2 values of the wheat and maize grain prediction models were 79% and 76%, respectively. Thus, these models contribute to the study of As risk assessment for sewage sludge utilisation in calcareous soil-wheat/maize rotation systems.","PeriodicalId":20155,"journal":{"name":"Plant, Soil and Environment","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of arsenic accumulation in a calcareous soil-wheat/maize rotation system with continuous amendment of sewage sludge\",\"authors\":\"H. Chang, Lin lin Huang, P. Song, L. Ru\",\"doi\":\"10.17221/207/2022-pse\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A potted experiment was conducted to explore the accumulation of arsenic (As) and predict the uptake of As by a wheat-maize rotation system in calcareous soil with different rates of sewage sludge (SS) amendment over two consecutive years. The SS amendment decreased the pH value of calcareous soil but increased the cation exchange capacity (CEC), calcium carbonate (CC), organic carbon (OC) and As accumulation in soil and crops with increasing SS addition. The As bioconcentration factor (BCF) of wheat and maize had a significant negative correlation with pH, CC and a significant positive correlation with OC. Soil CEC had a significant positive correlation only with the As BCF of wheat. Regression analysis showed that soil As, pH, OC, CC and CEC were good predictors of the As concentration in wheat/maize. The regression model for each part of the wheat/maize plants had a high model efficiency value and explained 67~88% of the variability. The R2 values of the wheat and maize grain prediction models were 79% and 76%, respectively. Thus, these models contribute to the study of As risk assessment for sewage sludge utilisation in calcareous soil-wheat/maize rotation systems.\",\"PeriodicalId\":20155,\"journal\":{\"name\":\"Plant, Soil and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Soil and Environment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/207/2022-pse\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Soil and Environment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/207/2022-pse","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

采用盆栽试验研究了连续2年不同污泥增效速率下小麦-玉米轮作制度对钙质土壤砷(As)积累的影响,并预测了其对砷的吸收。随着SS添加量的增加,土壤和作物的阳离子交换容量(CEC)、碳酸钙(CC)、有机碳(OC)和砷(As)积累量均增加。小麦和玉米As生物富集因子(BCF)与pH、CC呈极显著负相关,与OC呈极显著正相关。土壤CEC仅与小麦As BCF呈极显著正相关。回归分析表明,土壤As、pH、OC、CC和CEC是小麦/玉米As浓度的良好预测因子。小麦/玉米植株各部分的回归模型具有较高的模型效率值,可解释67~88%的变异。小麦和玉米籽粒预测模型的R2值分别为79%和76%。因此,这些模型有助于钙质土壤-小麦/玉米轮作系统中污水污泥利用的As风险评估研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of arsenic accumulation in a calcareous soil-wheat/maize rotation system with continuous amendment of sewage sludge
A potted experiment was conducted to explore the accumulation of arsenic (As) and predict the uptake of As by a wheat-maize rotation system in calcareous soil with different rates of sewage sludge (SS) amendment over two consecutive years. The SS amendment decreased the pH value of calcareous soil but increased the cation exchange capacity (CEC), calcium carbonate (CC), organic carbon (OC) and As accumulation in soil and crops with increasing SS addition. The As bioconcentration factor (BCF) of wheat and maize had a significant negative correlation with pH, CC and a significant positive correlation with OC. Soil CEC had a significant positive correlation only with the As BCF of wheat. Regression analysis showed that soil As, pH, OC, CC and CEC were good predictors of the As concentration in wheat/maize. The regression model for each part of the wheat/maize plants had a high model efficiency value and explained 67~88% of the variability. The R2 values of the wheat and maize grain prediction models were 79% and 76%, respectively. Thus, these models contribute to the study of As risk assessment for sewage sludge utilisation in calcareous soil-wheat/maize rotation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Soil and Environment
Plant, Soil and Environment Agronomy, Soil Science-农艺学
CiteScore
4.80
自引率
4.20%
发文量
61
审稿时长
2.4 months
期刊介绍: Experimental biology, agronomy, natural resources, and the environment; plant development, growth and productivity, breeding and seed production, growing of crops and their quality, soil care, conservation and productivity; agriculture and environment interactions from the perspective of sustainable development. Articles are published in English.
期刊最新文献
Effects of dose nitrogen on yield and global warming potential in a typical rice-wheat rotation system in China Effect of the combination of nitrapyrin and gamma-aminobutyric acid on soil nitrogen transformation characteristics and rice yield Rhizosphere and non-rhizosphere soil organic carbon and its labile fractions in alpine desertified grassland affected by vegetation restoration Mitigation of arsenic toxicity in rice grain through soil-water-plant continuum The influence of timing and planting proportion on the intraspecific competitiveness ability of drunken horse grass (Achnatherum inebrians (Hance) Keng) by fungal endophyte infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1