Hay Marn Hnin, Einar Stefánsson, Thorsteinn Loftsson, Thanyada Rungrotmongkol, Phatsawee Jansook
{"title":"血管紧张素转换酶抑制剂/环糊精包合物:溶液和固态表征及其热稳定性","authors":"Hay Marn Hnin, Einar Stefánsson, Thorsteinn Loftsson, Thanyada Rungrotmongkol, Phatsawee Jansook","doi":"10.1007/s10847-021-01124-z","DOIUrl":null,"url":null,"abstract":"<div><p>Angiotensin converting enzyme (ACE) inhibitors have recently gained attention as a new class of drug in the therapeutic management of glaucoma. However, the application of eye drops is limited because of their chemical instability in aqueous solutions. To overcome such a problem, cyclodextrins (CDs) were introduced to form inclusion complexes. Three ACE inhibitors, namely, captopril, quinapril and fosinopril (FOS), were chosen and the effect of CDs on their thermal stability in aqueous solutions was investigated. All three drugs formed inclusion complexes of 1:1 stoichiometry with all three natural CDs and the FOS/γCD inclusion complex possessed the highest stability constant, resulting in thermal stability enhancement. Furthermore, the addition of antioxidants could greatly enhance the thermal stability of FOS in the presence of γCD in aqueous solutions. The inclusion complex formation of FOS/γCD was further examined by computational and experimental characterizations. All these characterization results confirmed that FOS and γCD formed a true inclusion complex that provided drug stabilization in the aqueous eye drop medium.</p></div>","PeriodicalId":54324,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"102 3-4","pages":"347 - 358"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Angiotensin converting enzyme inhibitors/cyclodextrin inclusion complexes: solution and solid-state characterizations and their thermal stability\",\"authors\":\"Hay Marn Hnin, Einar Stefánsson, Thorsteinn Loftsson, Thanyada Rungrotmongkol, Phatsawee Jansook\",\"doi\":\"10.1007/s10847-021-01124-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Angiotensin converting enzyme (ACE) inhibitors have recently gained attention as a new class of drug in the therapeutic management of glaucoma. However, the application of eye drops is limited because of their chemical instability in aqueous solutions. To overcome such a problem, cyclodextrins (CDs) were introduced to form inclusion complexes. Three ACE inhibitors, namely, captopril, quinapril and fosinopril (FOS), were chosen and the effect of CDs on their thermal stability in aqueous solutions was investigated. All three drugs formed inclusion complexes of 1:1 stoichiometry with all three natural CDs and the FOS/γCD inclusion complex possessed the highest stability constant, resulting in thermal stability enhancement. Furthermore, the addition of antioxidants could greatly enhance the thermal stability of FOS in the presence of γCD in aqueous solutions. The inclusion complex formation of FOS/γCD was further examined by computational and experimental characterizations. All these characterization results confirmed that FOS and γCD formed a true inclusion complex that provided drug stabilization in the aqueous eye drop medium.</p></div>\",\"PeriodicalId\":54324,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"102 3-4\",\"pages\":\"347 - 358\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-021-01124-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-021-01124-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Angiotensin converting enzyme inhibitors/cyclodextrin inclusion complexes: solution and solid-state characterizations and their thermal stability
Angiotensin converting enzyme (ACE) inhibitors have recently gained attention as a new class of drug in the therapeutic management of glaucoma. However, the application of eye drops is limited because of their chemical instability in aqueous solutions. To overcome such a problem, cyclodextrins (CDs) were introduced to form inclusion complexes. Three ACE inhibitors, namely, captopril, quinapril and fosinopril (FOS), were chosen and the effect of CDs on their thermal stability in aqueous solutions was investigated. All three drugs formed inclusion complexes of 1:1 stoichiometry with all three natural CDs and the FOS/γCD inclusion complex possessed the highest stability constant, resulting in thermal stability enhancement. Furthermore, the addition of antioxidants could greatly enhance the thermal stability of FOS in the presence of γCD in aqueous solutions. The inclusion complex formation of FOS/γCD was further examined by computational and experimental characterizations. All these characterization results confirmed that FOS and γCD formed a true inclusion complex that provided drug stabilization in the aqueous eye drop medium.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.