1985 - 2020年长江三角洲不透水面的光谱概化与时间序列Landsat影像自动监测

遥感学报 Pub Date : 2021-10-16 DOI:10.34133/2021/9873816
Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, M. Jiang
{"title":"1985 - 2020年长江三角洲不透水面的光谱概化与时间序列Landsat影像自动监测","authors":"Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, M. Jiang","doi":"10.34133/2021/9873816","DOIUrl":null,"url":null,"abstract":"Accurately monitoring the spatiotemporal dynamics of impervious surfaces is very important for understanding the process of urbanization. However, the complicated makeup and spectral heterogeneity of impervious surfaces create difficulties for impervious surface monitoring. In this study, we propose an automatic method to capture the spatiotemporal expansion of impervious surfaces using spectral generalization and time series Landsat imagery. First, the multitemporal compositing and relative radiometric normalization methods were used to extract phenological information and ensure spectral consistency between reference imagery and monitored imagery. Second, we automatically derived training samples from the prior MSMT_IS30-2020 impervious surface products and migrated the surface reflectance of impervious surfaces in the reference period of 2020 to other periods (1985–2015). Third, the random forest classification method, trained using the migrated surface reflectance of impervious surfaces and pervious surface training samples at each period, was employed to extract temporally independent impervious surfaces. Further, a temporal consistency check method was applied to ensure the consistency and reliability of the monitoring results. According to qualitative and quantitative validation results, the method achieved an overall accuracy of 90.9% and kappa coefficient of 0.859 in identifying the spatiotemporal expansion of impervious surfaces and performed better in capturing the impervious surface dynamics when compared with other impervious surface datasets. Lastly, our results indicate that a rapid increase of impervious surfaces was observed in the Yangtze River Delta, and the area of impervious surfaces in 2000 and 2020 was 1.86 times and 4.76 times that of 1985, respectively. Therefore, it could be concluded that the proposed method offered a novel perspective for providing timely and accurate impervious surface dynamics.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta\",\"authors\":\"Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, M. Jiang\",\"doi\":\"10.34133/2021/9873816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately monitoring the spatiotemporal dynamics of impervious surfaces is very important for understanding the process of urbanization. However, the complicated makeup and spectral heterogeneity of impervious surfaces create difficulties for impervious surface monitoring. In this study, we propose an automatic method to capture the spatiotemporal expansion of impervious surfaces using spectral generalization and time series Landsat imagery. First, the multitemporal compositing and relative radiometric normalization methods were used to extract phenological information and ensure spectral consistency between reference imagery and monitored imagery. Second, we automatically derived training samples from the prior MSMT_IS30-2020 impervious surface products and migrated the surface reflectance of impervious surfaces in the reference period of 2020 to other periods (1985–2015). Third, the random forest classification method, trained using the migrated surface reflectance of impervious surfaces and pervious surface training samples at each period, was employed to extract temporally independent impervious surfaces. Further, a temporal consistency check method was applied to ensure the consistency and reliability of the monitoring results. According to qualitative and quantitative validation results, the method achieved an overall accuracy of 90.9% and kappa coefficient of 0.859 in identifying the spatiotemporal expansion of impervious surfaces and performed better in capturing the impervious surface dynamics when compared with other impervious surface datasets. Lastly, our results indicate that a rapid increase of impervious surfaces was observed in the Yangtze River Delta, and the area of impervious surfaces in 2000 and 2020 was 1.86 times and 4.76 times that of 1985, respectively. Therefore, it could be concluded that the proposed method offered a novel perspective for providing timely and accurate impervious surface dynamics.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9873816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9873816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

准确监测不透水地表的时空动态对理解城市化进程具有重要意义。然而,不透水面的复杂组成和光谱非均质性给不透水面监测带来了困难。在这项研究中,我们提出了一种利用光谱概化和时间序列Landsat图像自动捕获不透水面时空扩展的方法。首先,采用多时段合成和相对辐射归一化方法提取物候信息,确保参考影像与监测影像的光谱一致性;其次,我们从之前的MSMT_IS30-2020不透水面产品中自动提取训练样本,并将参考期2020不透水面的表面反射率迁移到其他时期(1985-2015)。第三,采用随机森林分类方法,利用不透水面的迁移表面反射率和每个时段的不透水面训练样本进行训练,提取时间独立的不透水面。采用时间一致性检验方法,确保监测结果的一致性和可靠性。定性和定量验证结果表明,该方法识别不透水面时空扩展的总体精度为90.9%,kappa系数为0.859,在捕获不透水面动态方面优于其他不透水面数据集。结果表明,长江三角洲不透水面面积呈快速增长趋势,2000年和2020年不透水面面积分别是1985年的1.86倍和4.76倍。因此,该方法为提供及时准确的不透水面动力学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta
Accurately monitoring the spatiotemporal dynamics of impervious surfaces is very important for understanding the process of urbanization. However, the complicated makeup and spectral heterogeneity of impervious surfaces create difficulties for impervious surface monitoring. In this study, we propose an automatic method to capture the spatiotemporal expansion of impervious surfaces using spectral generalization and time series Landsat imagery. First, the multitemporal compositing and relative radiometric normalization methods were used to extract phenological information and ensure spectral consistency between reference imagery and monitored imagery. Second, we automatically derived training samples from the prior MSMT_IS30-2020 impervious surface products and migrated the surface reflectance of impervious surfaces in the reference period of 2020 to other periods (1985–2015). Third, the random forest classification method, trained using the migrated surface reflectance of impervious surfaces and pervious surface training samples at each period, was employed to extract temporally independent impervious surfaces. Further, a temporal consistency check method was applied to ensure the consistency and reliability of the monitoring results. According to qualitative and quantitative validation results, the method achieved an overall accuracy of 90.9% and kappa coefficient of 0.859 in identifying the spatiotemporal expansion of impervious surfaces and performed better in capturing the impervious surface dynamics when compared with other impervious surface datasets. Lastly, our results indicate that a rapid increase of impervious surfaces was observed in the Yangtze River Delta, and the area of impervious surfaces in 2000 and 2020 was 1.86 times and 4.76 times that of 1985, respectively. Therefore, it could be concluded that the proposed method offered a novel perspective for providing timely and accurate impervious surface dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
期刊最新文献
Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change Simulating potential tree height for beech-maple-birch forests in northeastern United States on Google Earth Engine Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping Urban renewal mapping: A case study in Beijing from 2000 to 2020 Improved fine-scale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1