{"title":"人工智能方法在制冷剂正常沸点预测中的应用","authors":"Bo Liu, Maryam Karimi Nouroddin","doi":"10.1155/2023/6809569","DOIUrl":null,"url":null,"abstract":"Due to the desirable and interesting applications of refrigerants in organic Rankine cycles, heat pumps, and refrigeration, engineers and researchers are becoming more interested in refrigerant properties. One of the most dominant thermophysical properties of these fluids is their normal boiling point (Tb). In the current study, a novel extreme learning method (ELM) and ensemble decision tree boosted algorithm (EDT Boosted) are proposed to forecast the normal boiling point from 16 different molecular groups and one topological index. To this end, a total of 334 data points of Tb are gathered to prepare and test ELM and EDT boosted algorithms. The visual and mathematical comparisons of model outputs and real Tb express that proposed models have great potential to predict Tb of refrigerant. Moreover, sensitivity analysis is applied to explain the effectiveness of input parameters on the determination of Tb for refrigerants.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Intelligent Approach to Predict the Normal Boiling Point of Refrigerants\",\"authors\":\"Bo Liu, Maryam Karimi Nouroddin\",\"doi\":\"10.1155/2023/6809569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the desirable and interesting applications of refrigerants in organic Rankine cycles, heat pumps, and refrigeration, engineers and researchers are becoming more interested in refrigerant properties. One of the most dominant thermophysical properties of these fluids is their normal boiling point (Tb). In the current study, a novel extreme learning method (ELM) and ensemble decision tree boosted algorithm (EDT Boosted) are proposed to forecast the normal boiling point from 16 different molecular groups and one topological index. To this end, a total of 334 data points of Tb are gathered to prepare and test ELM and EDT boosted algorithms. The visual and mathematical comparisons of model outputs and real Tb express that proposed models have great potential to predict Tb of refrigerant. Moreover, sensitivity analysis is applied to explain the effectiveness of input parameters on the determination of Tb for refrigerants.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6809569\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6809569","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Application of Artificial Intelligent Approach to Predict the Normal Boiling Point of Refrigerants
Due to the desirable and interesting applications of refrigerants in organic Rankine cycles, heat pumps, and refrigeration, engineers and researchers are becoming more interested in refrigerant properties. One of the most dominant thermophysical properties of these fluids is their normal boiling point (Tb). In the current study, a novel extreme learning method (ELM) and ensemble decision tree boosted algorithm (EDT Boosted) are proposed to forecast the normal boiling point from 16 different molecular groups and one topological index. To this end, a total of 334 data points of Tb are gathered to prepare and test ELM and EDT boosted algorithms. The visual and mathematical comparisons of model outputs and real Tb express that proposed models have great potential to predict Tb of refrigerant. Moreover, sensitivity analysis is applied to explain the effectiveness of input parameters on the determination of Tb for refrigerants.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.