番茄茄× S杂交优势和遗传力评价。热带季风气候下的细叶属植物

IF 1.5 Q2 AGRONOMY International Journal of Agronomy Pub Date : 2023-01-25 DOI:10.1155/2023/3003355
C. O. Ene, W. G. Abtew, H. Oselebe, F. U. Ozi, O. Ogah, E. Okechukwu, U. Chukwudi
{"title":"番茄茄× S杂交优势和遗传力评价。热带季风气候下的细叶属植物","authors":"C. O. Ene, W. G. Abtew, H. Oselebe, F. U. Ozi, O. Ogah, E. Okechukwu, U. Chukwudi","doi":"10.1155/2023/3003355","DOIUrl":null,"url":null,"abstract":"High humidity is a major constraint to increased tomato fruit production in a cool tropical monsoon climate. However, the genetic variation observed in Solanum pimpinellifolium makes it a good gene donor for breeding tomato cultivars capable of thriving under high humidity. The objective of this study was to estimate heterosis, heritability for higher yield, and to assess the adaptability of the genotypes to humid conditions. Genotypes were raised from five morphologically divergent parents, viz., wild parent (W)–“LA2093,” “CLN2498D” (D), “CLN2417H” (H), “Tima” (T), and “UC Dan INDIA” (U). The F1s were generated by biparental mating design using “LA2093” as a common pollen donor that was selfed to produce F2s and backcrossed to both parents to obtain BC1s and BC2s. The trial was laid out in a randomized complete block design with three replicates. Data were collected on selected yield-influencing traits and analyzed. “D × W” and “U × W” hybrids showed significant positive better parent heterosis for fruit weight per plant (30.4% and 35.5%) and total fruit yield (48.6% and 26.9%), respectively. The additive variance was higher than dominance variance for all the traits, including total fruit yield in all hybrids viz., “H × W,” “D × W,” “T × W,” and “U × W.” High narrow sense heritability estimate of ≥60% was observed in “D × W” and “U × W” hybrids for the majority of the floral and fruit traits including total fruit yield. This makes the improvement of “D × W” and “U × W” hybrids by direct selection advantageous. Hence, the adoption of selection for the affected traits in subsequent tomato breeding programs would enhance fruit yield and adaptability to humid environments.","PeriodicalId":13844,"journal":{"name":"International Journal of Agronomy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Vigor and Heritability Estimates in Tomato Crosses Involving Solanum lycopersicum × S. pimpinellifolium under Cool Tropical Monsoon Climate\",\"authors\":\"C. O. Ene, W. G. Abtew, H. Oselebe, F. U. Ozi, O. Ogah, E. Okechukwu, U. Chukwudi\",\"doi\":\"10.1155/2023/3003355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High humidity is a major constraint to increased tomato fruit production in a cool tropical monsoon climate. However, the genetic variation observed in Solanum pimpinellifolium makes it a good gene donor for breeding tomato cultivars capable of thriving under high humidity. The objective of this study was to estimate heterosis, heritability for higher yield, and to assess the adaptability of the genotypes to humid conditions. Genotypes were raised from five morphologically divergent parents, viz., wild parent (W)–“LA2093,” “CLN2498D” (D), “CLN2417H” (H), “Tima” (T), and “UC Dan INDIA” (U). The F1s were generated by biparental mating design using “LA2093” as a common pollen donor that was selfed to produce F2s and backcrossed to both parents to obtain BC1s and BC2s. The trial was laid out in a randomized complete block design with three replicates. Data were collected on selected yield-influencing traits and analyzed. “D × W” and “U × W” hybrids showed significant positive better parent heterosis for fruit weight per plant (30.4% and 35.5%) and total fruit yield (48.6% and 26.9%), respectively. The additive variance was higher than dominance variance for all the traits, including total fruit yield in all hybrids viz., “H × W,” “D × W,” “T × W,” and “U × W.” High narrow sense heritability estimate of ≥60% was observed in “D × W” and “U × W” hybrids for the majority of the floral and fruit traits including total fruit yield. This makes the improvement of “D × W” and “U × W” hybrids by direct selection advantageous. Hence, the adoption of selection for the affected traits in subsequent tomato breeding programs would enhance fruit yield and adaptability to humid environments.\",\"PeriodicalId\":13844,\"journal\":{\"name\":\"International Journal of Agronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3003355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3003355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

在凉爽的热带季风气候中,高湿度是番茄产量增加的主要制约因素。然而,在茄中观察到的遗传变异使其成为培育能够在高湿度下茁壮成长的番茄品种的良好基因供体。本研究的目的是估计杂种优势、高产遗传力,并评估基因型对潮湿条件的适应性。基因型由五个形态不同的亲本组成,即野生亲本(W)-“LA2093”、“CLN2498D”(D)、“CLN2 417H”(H)、“Tima”(T)和“UC Dan INDIA”(U)。F1是用“LA2093”作为普通花粉供体,通过双交交配设计产生的,自交产生F2,并与双亲回交获得BC1和BC2。试验采用三个重复的随机完全区组设计。收集影响产量的选定性状的数据并进行分析。“D × W”和“U × W”杂交种在单株果重(30.4%和35.5%)和总果产量(48.6%和26.9%)方面表现出显著的正优亲本杂种优势。所有性状的加性方差均高于显性方差,包括所有杂交种的总产量,即“H” × W、 “”D × W、 “”T × W、 ”和“U × W.“D中观察到≥60%的高狭义遗传力估计 × W”和“U × W”杂交种的大多数花和果实性状,包括总果实产量。这使得“D”的改进 × W”和“U × W”杂交种通过直接选择具有优势。因此,在随后的番茄育种计划中采用对受影响性状的选择将提高果实产量和对潮湿环境的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Vigor and Heritability Estimates in Tomato Crosses Involving Solanum lycopersicum × S. pimpinellifolium under Cool Tropical Monsoon Climate
High humidity is a major constraint to increased tomato fruit production in a cool tropical monsoon climate. However, the genetic variation observed in Solanum pimpinellifolium makes it a good gene donor for breeding tomato cultivars capable of thriving under high humidity. The objective of this study was to estimate heterosis, heritability for higher yield, and to assess the adaptability of the genotypes to humid conditions. Genotypes were raised from five morphologically divergent parents, viz., wild parent (W)–“LA2093,” “CLN2498D” (D), “CLN2417H” (H), “Tima” (T), and “UC Dan INDIA” (U). The F1s were generated by biparental mating design using “LA2093” as a common pollen donor that was selfed to produce F2s and backcrossed to both parents to obtain BC1s and BC2s. The trial was laid out in a randomized complete block design with three replicates. Data were collected on selected yield-influencing traits and analyzed. “D × W” and “U × W” hybrids showed significant positive better parent heterosis for fruit weight per plant (30.4% and 35.5%) and total fruit yield (48.6% and 26.9%), respectively. The additive variance was higher than dominance variance for all the traits, including total fruit yield in all hybrids viz., “H × W,” “D × W,” “T × W,” and “U × W.” High narrow sense heritability estimate of ≥60% was observed in “D × W” and “U × W” hybrids for the majority of the floral and fruit traits including total fruit yield. This makes the improvement of “D × W” and “U × W” hybrids by direct selection advantageous. Hence, the adoption of selection for the affected traits in subsequent tomato breeding programs would enhance fruit yield and adaptability to humid environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.30%
发文量
66
审稿时长
16 weeks
期刊最新文献
Effect of Salicylic Acid Foliar Application on Bioactive Compounds and Antioxidant Activity in Holy Basil (Ocimum sanctum L.) Soil Properties, Crop Yield, and Economic Return in Response to Lime Application on Acidic Nitisols of Southern Highlands of Ethiopia Genetic Diversity and Association of Yield-Related Traits in Taro (Colocasia esculenta (L.) Schott) Sourced from Different Agroecological Origins of Nigeria Phylogenetic Determination of Chenopodium quinoaBased on the Chloroplast Genes rbcL and matK Urea Split Application to Maize (Zea mays L.) Growth Stages of Medium Maturities, Influenced on Grain Yield and Parameter for Yield at Bako, East Wollega, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1