摄影测量在建筑立面中的适用性分析

IF 0.6 Q4 ENGINEERING, CIVIL Civil and Environmental Engineering Reports Pub Date : 2022-09-01 DOI:10.2478/ceer-2022-0035
M. Siewczyńska, Tomasz Zioło
{"title":"摄影测量在建筑立面中的适用性分析","authors":"M. Siewczyńska, Tomasz Zioło","doi":"10.2478/ceer-2022-0035","DOIUrl":null,"url":null,"abstract":"Abstract This article evaluates the accuracy of 3D models made from point clouds obtained from photogrammetry. Photographs were taken from ground level and using a drone, and data processing was performed in 3DF Zephyr. The models were compared with the actual dimensions of the buildings. Four different building objects with varying degrees of complexity were analysed. The aim of the research is to analyse the conditions for taking photographs and how they are transformed into a point cloud, and to see how and whether the complexity of the shape of the facade affects the accuracy of the 3D model made from the point cloud. The inaccuracy of the point cloud in the form of point spread for all analysed cases was 1.8±0.4 cm on average. The largest measurement error was found in the case of a multi-storey building. Despite the presented inaccuracies, it was considered advantageous to use the point cloud obtained through photogrammetry in the inventory. No difference was observed in the accuracy of the model depending on the complexity of the building. Recommendations were made regarding the conditions for taking photographs.","PeriodicalId":54121,"journal":{"name":"Civil and Environmental Engineering Reports","volume":"32 1","pages":"182 - 206"},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Applicability of Photogrammetry in Building Façade\",\"authors\":\"M. Siewczyńska, Tomasz Zioło\",\"doi\":\"10.2478/ceer-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article evaluates the accuracy of 3D models made from point clouds obtained from photogrammetry. Photographs were taken from ground level and using a drone, and data processing was performed in 3DF Zephyr. The models were compared with the actual dimensions of the buildings. Four different building objects with varying degrees of complexity were analysed. The aim of the research is to analyse the conditions for taking photographs and how they are transformed into a point cloud, and to see how and whether the complexity of the shape of the facade affects the accuracy of the 3D model made from the point cloud. The inaccuracy of the point cloud in the form of point spread for all analysed cases was 1.8±0.4 cm on average. The largest measurement error was found in the case of a multi-storey building. Despite the presented inaccuracies, it was considered advantageous to use the point cloud obtained through photogrammetry in the inventory. No difference was observed in the accuracy of the model depending on the complexity of the building. Recommendations were made regarding the conditions for taking photographs.\",\"PeriodicalId\":54121,\"journal\":{\"name\":\"Civil and Environmental Engineering Reports\",\"volume\":\"32 1\",\"pages\":\"182 - 206\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ceer-2022-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ceer-2022-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文评估了由摄影测量获得的点云制作的三维模型的准确性。使用无人机从地面拍摄照片,并在3DF Zephyr中进行数据处理。模型与建筑物的实际尺寸进行了比较。分析了四种不同复杂程度的建筑对象。这项研究的目的是分析拍摄照片的条件以及照片如何转化为点云,并了解立面形状的复杂性如何以及是否会影响由点云制作的3D模型的准确性。所有分析病例的点扩散形式的点云的不准确度平均为1.8±0.4 cm。最大的测量误差是在多层建筑的情况下发现的。尽管存在不准确之处,但在清单中使用通过摄影测量获得的点云被认为是有利的。根据建筑的复杂性,模型的准确性没有差异。对拍照条件提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the Applicability of Photogrammetry in Building Façade
Abstract This article evaluates the accuracy of 3D models made from point clouds obtained from photogrammetry. Photographs were taken from ground level and using a drone, and data processing was performed in 3DF Zephyr. The models were compared with the actual dimensions of the buildings. Four different building objects with varying degrees of complexity were analysed. The aim of the research is to analyse the conditions for taking photographs and how they are transformed into a point cloud, and to see how and whether the complexity of the shape of the facade affects the accuracy of the 3D model made from the point cloud. The inaccuracy of the point cloud in the form of point spread for all analysed cases was 1.8±0.4 cm on average. The largest measurement error was found in the case of a multi-storey building. Despite the presented inaccuracies, it was considered advantageous to use the point cloud obtained through photogrammetry in the inventory. No difference was observed in the accuracy of the model depending on the complexity of the building. Recommendations were made regarding the conditions for taking photographs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
40
审稿时长
52 weeks
期刊最新文献
Comparison of the Use of Renewable Energy Sources (Res) by Poland and Latvia in the Perspective of the Environmental Objectives Set by the European Union Interlevel Connections as a Way to Increase the Ventilation Efficiency of a Mine Ventilation Network - a Case Study Flexural Buckling Resistance of Stiffeners Reinforcing Wall of a Steel Silo Short- term Influence of Glyphosate on Microorganisms in Backyard Compost Ozonation in Wastewater Disinfection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1