Nadia A. Valverdi, Camilla Acosta, Gabriella R. Dauber, Gregory R. Goldsmith, Eleinis Ávila-Lovera
{"title":"叶片叶片光合作用测定方法的比较","authors":"Nadia A. Valverdi, Camilla Acosta, Gabriella R. Dauber, Gregory R. Goldsmith, Eleinis Ávila-Lovera","doi":"10.1002/aps3.11542","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>A comparison of methods using different materials to exclude light from stems to prevent stem CO<sub>2</sub> exchange (i.e., photosynthesis), without affecting stem conductance to water vapor, surface temperature, and relative humidity, was conducted on stems of avocado trees in California.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>The experiment featured three materials: aluminum foil, paper-based wrap, and mineral-based paint. We examined stem CO<sub>2</sub> exchange with and without the light exclusion treatments. We also examined stem surface temperature, relative humidity, and photosynthetic active radiation (PAR) under the cover materials. All materials reduced PAR and stem CO<sub>2</sub> exchange. However, aluminum foil reduced stem surface temperature and increased relative humidity.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Methods used to study stem CO<sub>2</sub> exchange through light exclusion have historically relied on methods that may induce experimental artifacts. Among the methods tested here, mineral-based paint effectively reduced PAR without affecting stem surface temperature and relative humidity around the stem.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11542","citationCount":"0","resultStr":"{\"title\":\"A comparison of methods for excluding light from stems to evaluate stem photosynthesis\",\"authors\":\"Nadia A. Valverdi, Camilla Acosta, Gabriella R. Dauber, Gregory R. Goldsmith, Eleinis Ávila-Lovera\",\"doi\":\"10.1002/aps3.11542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>A comparison of methods using different materials to exclude light from stems to prevent stem CO<sub>2</sub> exchange (i.e., photosynthesis), without affecting stem conductance to water vapor, surface temperature, and relative humidity, was conducted on stems of avocado trees in California.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>The experiment featured three materials: aluminum foil, paper-based wrap, and mineral-based paint. We examined stem CO<sub>2</sub> exchange with and without the light exclusion treatments. We also examined stem surface temperature, relative humidity, and photosynthetic active radiation (PAR) under the cover materials. All materials reduced PAR and stem CO<sub>2</sub> exchange. However, aluminum foil reduced stem surface temperature and increased relative humidity.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Methods used to study stem CO<sub>2</sub> exchange through light exclusion have historically relied on methods that may induce experimental artifacts. Among the methods tested here, mineral-based paint effectively reduced PAR without affecting stem surface temperature and relative humidity around the stem.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11542\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11542\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11542","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A comparison of methods for excluding light from stems to evaluate stem photosynthesis
Premise
A comparison of methods using different materials to exclude light from stems to prevent stem CO2 exchange (i.e., photosynthesis), without affecting stem conductance to water vapor, surface temperature, and relative humidity, was conducted on stems of avocado trees in California.
Methods and Results
The experiment featured three materials: aluminum foil, paper-based wrap, and mineral-based paint. We examined stem CO2 exchange with and without the light exclusion treatments. We also examined stem surface temperature, relative humidity, and photosynthetic active radiation (PAR) under the cover materials. All materials reduced PAR and stem CO2 exchange. However, aluminum foil reduced stem surface temperature and increased relative humidity.
Conclusions
Methods used to study stem CO2 exchange through light exclusion have historically relied on methods that may induce experimental artifacts. Among the methods tested here, mineral-based paint effectively reduced PAR without affecting stem surface temperature and relative humidity around the stem.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.