基于文本挖掘的工业环境下维修记录分类模型的应用

IF 1.8 Q3 ENGINEERING, INDUSTRIAL Journal of Quality in Maintenance Engineering Pub Date : 2022-02-17 DOI:10.1108/jqme-08-2021-0064
Umama Rahman, Miraj Uddin Mahbub
{"title":"基于文本挖掘的工业环境下维修记录分类模型的应用","authors":"Umama Rahman, Miraj Uddin Mahbub","doi":"10.1108/jqme-08-2021-0064","DOIUrl":null,"url":null,"abstract":"PurposeThe data created from regular maintenance activities of equipment are stored as text in industrial plants. The size of these data is increasing rapidly nowadays. Text mining provides a chance to handle this huge amount of text data and extract meaningful information to improve various processes of an industrial environment. This paper represents the application of classification models on maintenance text records to classify failure for improving maintenance programs in the industry.Design/methodology/approachThis paper is presented as an implementation study, where text mining approaches are used for binary classification of text data. Naive Bayes and Support Vector Machine (SVM), two classification algorithms are applied for training and testing of the models as per the labeled data. The reason behind this is, these algorithms perform better on text data for classifying failure and they are easy to handle. A methodology is proposed for the development of maintenance programs, including classification of potential failure in advance by analyzing the regular maintenance data as well as comparing the performance of both models on the data.FindingsThe accuracy of both models falls within the acceptable limit, and performance evaluation of the models concludes the validation of the results. Other performance measures exhibit excellent values for both of the models.Practical implicationsThe proposed approach provides the maintenance team an opportunity to know about the upcoming breakdown in advance so that necessary measures can be taken to prevent failure in an industrial environment. As predictive maintenance incurs a high expense, it could be a better replacement for small and medium industrial plants.Originality/valueNowadays, maintenance is preventive-based rather than a corrective approach. The proposed technique is facilitating the concept of a proactive approach by minimizing the cost of additional maintenance steps. As predictive maintenance is efficient but incurs high expenses, this proposed method can minimize unnecessary maintenance operations and keep control over the budget. This is a significant way of developing maintenance programs and will make maintenance personnel ready for the machine breakdown.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of classification models on maintenance records through text mining approach in industrial environment\",\"authors\":\"Umama Rahman, Miraj Uddin Mahbub\",\"doi\":\"10.1108/jqme-08-2021-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe data created from regular maintenance activities of equipment are stored as text in industrial plants. The size of these data is increasing rapidly nowadays. Text mining provides a chance to handle this huge amount of text data and extract meaningful information to improve various processes of an industrial environment. This paper represents the application of classification models on maintenance text records to classify failure for improving maintenance programs in the industry.Design/methodology/approachThis paper is presented as an implementation study, where text mining approaches are used for binary classification of text data. Naive Bayes and Support Vector Machine (SVM), two classification algorithms are applied for training and testing of the models as per the labeled data. The reason behind this is, these algorithms perform better on text data for classifying failure and they are easy to handle. A methodology is proposed for the development of maintenance programs, including classification of potential failure in advance by analyzing the regular maintenance data as well as comparing the performance of both models on the data.FindingsThe accuracy of both models falls within the acceptable limit, and performance evaluation of the models concludes the validation of the results. Other performance measures exhibit excellent values for both of the models.Practical implicationsThe proposed approach provides the maintenance team an opportunity to know about the upcoming breakdown in advance so that necessary measures can be taken to prevent failure in an industrial environment. As predictive maintenance incurs a high expense, it could be a better replacement for small and medium industrial plants.Originality/valueNowadays, maintenance is preventive-based rather than a corrective approach. The proposed technique is facilitating the concept of a proactive approach by minimizing the cost of additional maintenance steps. As predictive maintenance is efficient but incurs high expenses, this proposed method can minimize unnecessary maintenance operations and keep control over the budget. This is a significant way of developing maintenance programs and will make maintenance personnel ready for the machine breakdown.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-08-2021-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-08-2021-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

目的将设备定期维护活动产生的数据以文本形式存储在工业厂房中。如今,这些数据的规模正在迅速增长。文本挖掘为处理大量文本数据和提取有意义的信息提供了机会,以改进工业环境的各种流程。本文介绍了在维修文本记录上应用分类模型对故障进行分类,以改进工业维修计划。设计/方法/方法本文是一个实现研究,其中文本挖掘方法用于文本数据的二进制分类。采用朴素贝叶斯(Naive Bayes)和支持向量机(SVM)两种分类算法,根据标记数据对模型进行训练和测试。这背后的原因是,这些算法在文本数据上对故障进行分类时表现更好,并且易于处理。提出了一种制定维修计划的方法,包括通过分析定期维修数据提前对潜在故障进行分类,并比较两种模型在数据上的性能。结果两种模型的准确度均在可接受范围内,对模型的性能评价是对结果的验证。其他性能度量对这两种模型都显示出极好的值。实际意义建议的方法为维护团队提供了提前了解即将发生的故障的机会,以便采取必要的措施来防止工业环境中的故障。由于预测性维护的费用较高,因此可以更好地替代中小型工业厂房。原创性/价值如今,维护是基于预防而不是纠正的方法。所建议的技术通过最小化额外维护步骤的成本来促进主动方法的概念。由于预测性维护效率高,但费用高,因此该方法可以最大限度地减少不必要的维护操作,并控制预算。这是制定维修计划的重要方法,并将使维修人员为机器故障做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of classification models on maintenance records through text mining approach in industrial environment
PurposeThe data created from regular maintenance activities of equipment are stored as text in industrial plants. The size of these data is increasing rapidly nowadays. Text mining provides a chance to handle this huge amount of text data and extract meaningful information to improve various processes of an industrial environment. This paper represents the application of classification models on maintenance text records to classify failure for improving maintenance programs in the industry.Design/methodology/approachThis paper is presented as an implementation study, where text mining approaches are used for binary classification of text data. Naive Bayes and Support Vector Machine (SVM), two classification algorithms are applied for training and testing of the models as per the labeled data. The reason behind this is, these algorithms perform better on text data for classifying failure and they are easy to handle. A methodology is proposed for the development of maintenance programs, including classification of potential failure in advance by analyzing the regular maintenance data as well as comparing the performance of both models on the data.FindingsThe accuracy of both models falls within the acceptable limit, and performance evaluation of the models concludes the validation of the results. Other performance measures exhibit excellent values for both of the models.Practical implicationsThe proposed approach provides the maintenance team an opportunity to know about the upcoming breakdown in advance so that necessary measures can be taken to prevent failure in an industrial environment. As predictive maintenance incurs a high expense, it could be a better replacement for small and medium industrial plants.Originality/valueNowadays, maintenance is preventive-based rather than a corrective approach. The proposed technique is facilitating the concept of a proactive approach by minimizing the cost of additional maintenance steps. As predictive maintenance is efficient but incurs high expenses, this proposed method can minimize unnecessary maintenance operations and keep control over the budget. This is a significant way of developing maintenance programs and will make maintenance personnel ready for the machine breakdown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality in Maintenance Engineering
Journal of Quality in Maintenance Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
4.00
自引率
13.30%
发文量
24
期刊介绍: This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance
期刊最新文献
Spare parts management in industry 4.0 era: a literature review Data-driven decision-making in maintenance management and coordination throughout the asset life cycle: an empirical study Joint maintenance planning and production scheduling optimization model for green environment Identification of optimal maintenance parameters for best maintenance and service management system in the SMEs Modeling and solving the multi-objective energy-efficient production planning and scheduling with imperfect maintenance activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1