酶联免疫吸附法测定食用燕窝中表皮生长因子

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Applied Biological Chemistry Pub Date : 2023-06-09 DOI:10.1186/s13765-023-00794-2
Weijuan Bai, Fenghong Deng, Xiaojiang Zhang, Yanping Han, Yue’e Xiao, Nan Wang, Xuncai Liu, Qunyan Fan, Baozhong Guo
{"title":"酶联免疫吸附法测定食用燕窝中表皮生长因子","authors":"Weijuan Bai,&nbsp;Fenghong Deng,&nbsp;Xiaojiang Zhang,&nbsp;Yanping Han,&nbsp;Yue’e Xiao,&nbsp;Nan Wang,&nbsp;Xuncai Liu,&nbsp;Qunyan Fan,&nbsp;Baozhong Guo","doi":"10.1186/s13765-023-00794-2","DOIUrl":null,"url":null,"abstract":"<div><p>Edible bird's nest (EBN) is a traditional food which was nourishing and functional. Particularly, there is the epidermal growth factor (EGF) in EBN, which is thought to play an important role in promoting skin repair. However, the type and content of EGF in EBN were not determined yet. In this study, the type of EGF in EBN was identified as bird EGF by enzyme-linked immunosorbent assay and this method was validated to be accurate and precise. Moreover, it was found that the content of EGF in raw-unclean EBN, raw-clean EBN and stewed EBN was 3000 pg/g–4000 pg/g and there were no significant differences, which suggested that the batches, origins, forms, stewing temperatures and stewing times of EBN had no effect on the content of EGF in EBN. However, it was due to that enzyme destroyed the primary structure of EGF, the EGF content of neutral protease and trypsin hydrolysates of EBN was lower than that of flavor enzymes, alkaline protease and pepsin hydrolysates of EGF. This study was the first to determine the type and content of EGF in EBN, and provided a theoretical basis for the selection and processing of EBN and using EBN as a source of EGF.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-023-00794-2","citationCount":"0","resultStr":"{\"title\":\"The determination of epidermal growth factor in Edible bird's nest by enzyme-linked immunosorbent assay\",\"authors\":\"Weijuan Bai,&nbsp;Fenghong Deng,&nbsp;Xiaojiang Zhang,&nbsp;Yanping Han,&nbsp;Yue’e Xiao,&nbsp;Nan Wang,&nbsp;Xuncai Liu,&nbsp;Qunyan Fan,&nbsp;Baozhong Guo\",\"doi\":\"10.1186/s13765-023-00794-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Edible bird's nest (EBN) is a traditional food which was nourishing and functional. Particularly, there is the epidermal growth factor (EGF) in EBN, which is thought to play an important role in promoting skin repair. However, the type and content of EGF in EBN were not determined yet. In this study, the type of EGF in EBN was identified as bird EGF by enzyme-linked immunosorbent assay and this method was validated to be accurate and precise. Moreover, it was found that the content of EGF in raw-unclean EBN, raw-clean EBN and stewed EBN was 3000 pg/g–4000 pg/g and there were no significant differences, which suggested that the batches, origins, forms, stewing temperatures and stewing times of EBN had no effect on the content of EGF in EBN. However, it was due to that enzyme destroyed the primary structure of EGF, the EGF content of neutral protease and trypsin hydrolysates of EBN was lower than that of flavor enzymes, alkaline protease and pepsin hydrolysates of EGF. This study was the first to determine the type and content of EGF in EBN, and provided a theoretical basis for the selection and processing of EBN and using EBN as a source of EGF.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-023-00794-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-023-00794-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-023-00794-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

燕窝是一种营养丰富、功能丰富的传统食品。特别是,EBN中含有表皮生长因子(EGF),它被认为在促进皮肤修复中起着重要作用。然而,EBN中EGF的种类和含量尚未确定。本研究通过酶联免疫吸附法鉴定了EBN中EGF的类型为鸟类EGF,验证了该方法的准确性和精密度。结果表明,未清洗、未清洗、炖煮后的EBN中EGF含量均为3000 pg/g - 4000 pg/g,差异不显著,说明EBN的批次、产地、形式、炖煮温度和炖煮时间对EBN中EGF含量没有影响。然而,由于该酶破坏了EGF的初级结构,中性蛋白酶和胰蛋白酶水解产物的EGF含量低于风味酶、碱性蛋白酶和胃蛋白酶水解产物的EGF含量。本研究首次确定了EBN中EGF的种类和含量,为EBN的选择和加工以及将EBN作为EGF的来源提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The determination of epidermal growth factor in Edible bird's nest by enzyme-linked immunosorbent assay

Edible bird's nest (EBN) is a traditional food which was nourishing and functional. Particularly, there is the epidermal growth factor (EGF) in EBN, which is thought to play an important role in promoting skin repair. However, the type and content of EGF in EBN were not determined yet. In this study, the type of EGF in EBN was identified as bird EGF by enzyme-linked immunosorbent assay and this method was validated to be accurate and precise. Moreover, it was found that the content of EGF in raw-unclean EBN, raw-clean EBN and stewed EBN was 3000 pg/g–4000 pg/g and there were no significant differences, which suggested that the batches, origins, forms, stewing temperatures and stewing times of EBN had no effect on the content of EGF in EBN. However, it was due to that enzyme destroyed the primary structure of EGF, the EGF content of neutral protease and trypsin hydrolysates of EBN was lower than that of flavor enzymes, alkaline protease and pepsin hydrolysates of EGF. This study was the first to determine the type and content of EGF in EBN, and provided a theoretical basis for the selection and processing of EBN and using EBN as a source of EGF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
期刊最新文献
Effects of oral hyaluronic acid on monosodium iodoacetate-induced osteoarthritis in rats: mechanistic insights and therapeutic implications Targeted dsRNA-mediated suppression of Phytophthora infestans infection via Avr3a Anti-aging potential of Cephalotaxus harringtonia extracts: the role of harringtonine and homoharringtonine in skin protection Publisher Correction to: Development of Bacillus stratosphericus Lysate Concentrate to Control Sebum Secretion through In vitro Studies and Clinical Trial In vitro effectiveness of CB469, a MET tyrosine kinase inhibitor in MET-activated cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1