高低波形钢纤维配筋率对SFSCC梁力学性能的综合影响

Sihem Chaib, R. Lassoued
{"title":"高低波形钢纤维配筋率对SFSCC梁力学性能的综合影响","authors":"Sihem Chaib, R. Lassoued","doi":"10.13170/AIJST.10.1.19723","DOIUrl":null,"url":null,"abstract":"In order to improve the fragile nature of concrete, and its low tensile strength, and with a view to giving it the desired properties, which serve to build more durable structures at less cost, the association of a self-consolidating concrete with fiber, is considered a wise combination.  However, given the limited amount of research on the response of SFSCC structures, designers and engineers do not use this material with confidence. In the present work, an experimental companion was conducted, in the interest of examining, the combined effect of fibers and stirrups include low and high rate of steel fiber, on the behavior of SFSCC beams. This choice allowed working on economically viable SFSCC. Beams were made also with ordinary concrete and others with self-consolidating. Thirty-six beams were of identical cross-section 10x20cm and length of 120cm; carried out with or without longitudinal and transverse reinforcement. Before proceeding with the main part of the research program, the concrete mixtures were characterized first in the fresh state by the following tests: Slump Flow, Time Flow T500; J-Ring, L-Box, V-Funnel and Sieve stability, and then in the hardened state: compressive and tensile strengths. In the light of the results obtained, it was found that adding steel fibers to fresh self-consolidating concrete decreased its workability and fluidity, but improved its hardening properties. Subsequently, the addition of the steel fibers increased the flexural capacity of the beams significantly, and improved their ductility. Also, an addition of the steel fibers in an adequate percentage, in this case at 0.9%, made it possible to replace the shear reinforcements, and can lead to changing the mode of failure from a collapse by brittle shear, to a mechanism of ruin in ductile bending.","PeriodicalId":7128,"journal":{"name":"Aceh International Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Effect of Low and High Rate of Corrugated Steel Fiber and Stirrups on Mechanical Performance of SFSCC Beams\",\"authors\":\"Sihem Chaib, R. Lassoued\",\"doi\":\"10.13170/AIJST.10.1.19723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the fragile nature of concrete, and its low tensile strength, and with a view to giving it the desired properties, which serve to build more durable structures at less cost, the association of a self-consolidating concrete with fiber, is considered a wise combination.  However, given the limited amount of research on the response of SFSCC structures, designers and engineers do not use this material with confidence. In the present work, an experimental companion was conducted, in the interest of examining, the combined effect of fibers and stirrups include low and high rate of steel fiber, on the behavior of SFSCC beams. This choice allowed working on economically viable SFSCC. Beams were made also with ordinary concrete and others with self-consolidating. Thirty-six beams were of identical cross-section 10x20cm and length of 120cm; carried out with or without longitudinal and transverse reinforcement. Before proceeding with the main part of the research program, the concrete mixtures were characterized first in the fresh state by the following tests: Slump Flow, Time Flow T500; J-Ring, L-Box, V-Funnel and Sieve stability, and then in the hardened state: compressive and tensile strengths. In the light of the results obtained, it was found that adding steel fibers to fresh self-consolidating concrete decreased its workability and fluidity, but improved its hardening properties. Subsequently, the addition of the steel fibers increased the flexural capacity of the beams significantly, and improved their ductility. Also, an addition of the steel fibers in an adequate percentage, in this case at 0.9%, made it possible to replace the shear reinforcements, and can lead to changing the mode of failure from a collapse by brittle shear, to a mechanism of ruin in ductile bending.\",\"PeriodicalId\":7128,\"journal\":{\"name\":\"Aceh International Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aceh International Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13170/AIJST.10.1.19723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aceh International Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13170/AIJST.10.1.19723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了改善混凝土的易碎性及其低抗拉强度,并赋予其所需的性能,以更低的成本建造更耐用的结构,自固结混凝土与纤维的结合被认为是一种明智的组合。然而,考虑到对SFSCC结构响应的研究数量有限,设计师和工程师对这种材料的使用并不放心。在本工作中,为了研究纤维和马镫(包括低和高钢纤维率)对SFSCC梁性能的综合影响,进行了实验研究。这一选择使得开发经济上可行的SFSCC成为可能。梁也用普通混凝土和其他自固结混凝土制成。36根梁的截面相同,为10x20cm,长度为120cm;在有或没有纵向和横向加固的情况下进行。在进行研究计划的主要部分之前,首先通过以下试验对混凝土混合料在新鲜状态下进行了表征:坍落度流,时间流T500;j型环,l型箱,v型漏斗和筛稳定,然后在硬化状态:抗压和抗拉强度。结果表明,新拌自固结混凝土中加入钢纤维降低了混凝土的和易性和流动性,但提高了混凝土的硬化性能。随后,钢纤维的加入显著提高了梁的抗弯能力,改善了梁的延性。此外,加入适当比例的钢纤维(在本例中为0.9%),可以取代抗剪增强,并可导致破坏模式从脆性剪切破坏转变为韧性弯曲破坏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined Effect of Low and High Rate of Corrugated Steel Fiber and Stirrups on Mechanical Performance of SFSCC Beams
In order to improve the fragile nature of concrete, and its low tensile strength, and with a view to giving it the desired properties, which serve to build more durable structures at less cost, the association of a self-consolidating concrete with fiber, is considered a wise combination.  However, given the limited amount of research on the response of SFSCC structures, designers and engineers do not use this material with confidence. In the present work, an experimental companion was conducted, in the interest of examining, the combined effect of fibers and stirrups include low and high rate of steel fiber, on the behavior of SFSCC beams. This choice allowed working on economically viable SFSCC. Beams were made also with ordinary concrete and others with self-consolidating. Thirty-six beams were of identical cross-section 10x20cm and length of 120cm; carried out with or without longitudinal and transverse reinforcement. Before proceeding with the main part of the research program, the concrete mixtures were characterized first in the fresh state by the following tests: Slump Flow, Time Flow T500; J-Ring, L-Box, V-Funnel and Sieve stability, and then in the hardened state: compressive and tensile strengths. In the light of the results obtained, it was found that adding steel fibers to fresh self-consolidating concrete decreased its workability and fluidity, but improved its hardening properties. Subsequently, the addition of the steel fibers increased the flexural capacity of the beams significantly, and improved their ductility. Also, an addition of the steel fibers in an adequate percentage, in this case at 0.9%, made it possible to replace the shear reinforcements, and can lead to changing the mode of failure from a collapse by brittle shear, to a mechanism of ruin in ductile bending.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊最新文献
Structural Health Monitoring by Identification Dynamic Properties and Load Rating Factor at Multi-span Prestressed Concrete Girder Bridge Isotherm and Kinetic Adsorption of Cadmium (Cd) onto Biosorbent Made from Kepok Banana Peel (Musa Acuminata balbisian): the Effect of Activator Type and Biosorbent Dosage Life Cycle Cost Analysis and Payback Period of 12-kW Wind Turbine for a Remote Telecommunications Base Station Simulation of Multi Reservoir Operation Rules with Interconnected Tunnel and Water Transfer Simple Technology of Material Physics of Groundwater Conservation in Dealing with Climate Change in Disaster Areas of North Sumatra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1